Osteoporosis (OP), the most prevalent bone degenerative disease, has become a significant public health challenge globally. Current therapies primarily target inhibiting osteoclast activity or stimulating osteoblast activation, but their effectiveness remains suboptimal. This paper introduced a "three birds, one stone" therapeutic approach for osteoporosis, employing upconversion nanoparticles (UCNPs) to create a dual-gas storage nanoplatform (UZPA-CP) targeting bone tissues, capable of concurrently generating carbon monoxide (CO) and hydrogen sulfide (HS).
View Article and Find Full Text PDFOsteoporosis is the most common bone metabolic disease that affects the health of middle-aged and elderly people, which is hallmarked by imbalanced bone remodeling and a deteriorating immune microenvironment. Magnesium and calcium are pivotal matrix components that participate in the bone formation process, especially in the immune microenvironment regulation and bone remodeling stages. Nevertheless, how to potently deliver magnesium and calcium to bone tissue remains a challenge.
View Article and Find Full Text PDFBrain-like energy-efficient computing has remained elusive for neuromorphic (NM) circuits and hardware platform implementations despite decades of research. In this work we reveal the opportunity to significantly improve the energy efficiency of digital neuromorphic hardware by introducing NM circuits employing two-dimensional (2D) transition metal dichalcogenide (TMD) layered channel material-based tunnel-field-effect transistors (TFETs). Our novel leaky-integrate-fire (LIF) based digital NM circuit along with its Hebbian learning circuitry operates at a wide range of supply voltages, frequencies, and activity factors, enabling two orders of magnitude higher energy-efficient computing that is difficult to achieve with conventional material and/or device platforms, specifically the silicon-based 7 nm low-standby-power FinFET technology.
View Article and Find Full Text PDFHuman chorionic gonadotropin (hCG), an endogenous glycoprotein hormone, has been widely used for the treatment of infertility and corpus luteum defect in women. The biological specificity of hCG is essentially determined by its beta (β-) subunit, whereas the alpha (α-) subunit is a common subunit shared among the gonadotropin family. In development of a therapeutic recombinant hCG, the purity analysis showed that the beta (β-) subunit has two variants, β1 and β2.
View Article and Find Full Text PDFIn this paper, we synthesized selenium nanoparticles (SeNPs) that could be effectively excited by pure yellow light (YL) source to enhance antibacterial ability. Meanwhile, YL could also play the role of anti-inflammatory and promote wound healing. In addition, in order to overcome the problem of low penetration depth of photodynamic therapy (PDT), SeNPs were encapsulated with polyethylenimine (PEI), then modified with the sound sensitive agent indocyanine green (ICG), realizing the combined photoacoustic therapy to promote the healing of wounds infected by drug-resistant bacteria.
View Article and Find Full Text PDFHigh-performance infrared p-i-n photodetectors based on InAs/InAsSb/AlAsSb superlattices on GaSb substrate have been demonstrated at 300K. These photodetectors exhibit 50% and 100% cut-off wavelength of ∼3.2 µm and ∼3.
View Article and Find Full Text PDFMyocardial infarction (MI) is a common disease that seriously threatens human health. It is noteworthy that oxygen is one of the key factors in the regulation of MI pathology procession: the controllable hypoxic microenvironment can enhance the tolerance of cardiac myocytes (CMs) and oxygen therapy regulates the immune microenvironment to repair the myocardial injury. Thus, the development of an oxygen-controllable treatment is critically important to unify MI prevention and timely treatment.
View Article and Find Full Text PDFOsteoporosis is one of the most common diseases affecting bone metabolism. Nitric oxide (NO), an endogenous gas molecule involved in osteogenesis, can effectively promote the proliferation and differentiation of osteoblasts. Although exogenous NO can reverse osteoporosis to a certain extent, the transitory half-life and short diffusion radius of NO severely limit its application.
View Article and Find Full Text PDFCopper-based interconnects employed in a wide range of integrated circuit (IC) products are fast approaching a dead-end due to their increasing resistivity and diminishing current carrying capacity with scaling, which severely degrades both performance and reliability. Here we demonstrate chemical vapor deposition-synthesized and intercalation-doped multilayer-graphene-nanoribbons (ML-GNRs) with better performance (more than 20% improvement in estimated delay per unit length), 25%/72% energy efficiency improvement at local/global level, and superior reliability w.r.
View Article and Find Full Text PDF