Publications by authors named "Junjun Yan"

Primary esophageal small cell carcinoma (PESC) is a rare, extremely aggressive malignancy characterized by rapid growth, early metastasis, and poor prognosis. This study presents a case of early-stage PESC that was initially misdiagnosed as an esophageal leiomyoma, which was observed as a submucosal tumor during gastroscopy. The patient subsequently underwent endoscopic submucosal dissection (ESD), which successfully achieved complete tumor resection.

View Article and Find Full Text PDF
Article Synopsis
  • Kernel dehydration rate (KDR) significantly influences maize harvesting and kernel quality, but its mechanisms are not fully understood.
  • Researchers discovered a quantitative trait locus (QTL) called qKDR1, which regulates the expression of a peptide gene, RPG, that produces a micropeptide (microRPG1) impacting KDR through ethylene signaling pathways.
  • Knockout experiments showed that loss of microRPG1 leads to quicker KDR, while overexpression or applying the micropeptide slows it down, providing insight for future maize breeding strategies.
View Article and Find Full Text PDF

Optogenetics' advancement has made light induction attractive for controlling biological processes due to its advantages of fine-tunability, reversibility, and low toxicity. The lactose operon induction system, commonly used in Escherichia coli, relies on the binding of lactose or isopropyl β-d-1-thiogalactopyranoside (IPTG) to the lactose repressor protein LacI, playing a pivotal role in controlling the lactose operon. Here, we harnessed the light-responsive light-oxygen-voltage 2 (LOV2) domain from Avena sativa phototropin 1 as a tool for light control and engineered LacI into two light-responsive variants, OptoLacIL and OptoLacID.

View Article and Find Full Text PDF

Vacuolar Pi transporters (VPTs) have recently been identified as important regulators of cellular Pi status in and . In the oil crop , and are two homologs of , the vacuolar Pi influx transporter in . Here, we show that Pi deficiency induces the transcription of both homologs of genes in leaves.

View Article and Find Full Text PDF

In plant leaves, starch is composed of glucan polymers that accumulate in chloroplasts as the products of photosynthesis during the day; starch is mobilized at night to continuously provide sugars to sustain plant growth and development. Efficient starch degradation requires the involvement of several enzymes, including β-amylase and glucan phosphatase. However, how these enzymes cooperate remains largely unclear.

View Article and Find Full Text PDF

N-methyldeoxyadenine (6mA) has recently been reported as a prevalent DNA modification in eukaryotes. The Tetrahymena thermophila MTA1 complex consisting of four subunits, namely MTA1, MTA9, p1, and p2, is the first identified eukaryotic 6mA methyltransferase (MTase) complex. Unlike the prokaryotic 6mA MTases which have been biochemically and structurally characterized, the operation mode of the MTA1 complex remains largely elusive.

View Article and Find Full Text PDF

Recent progress has shown that vacuolar Pi transporters (VPTs) are important for cellular Pi homoeostasis in Arabidopsis thaliana and Oryza sativa under fluctuating external Pi supply, but the identity and involvement of VPTs in cellular Pi homoeostasis in Brassica napus is poorly understood. Here, we identified two vacuolar Pi influx transporters B. napus, BnA09PHT5;1b and BnCnPHT5;1b, and uncovered their necessity for cellular Pi homoeostasis through functional analysis.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) is a bioactive phospholipid that serves as a potent mediator of cell proliferation, differentiation and apoptosis by binding to S1P receptors (S1PRs). S1P signalling is involved in the pathogenesis of numerous types of disease, including cancer. To the best of our knowledge, however, little is known about the expression patterns of S1PRs and their role in human colorectal cancer (CRC) cell migration and invasion.

View Article and Find Full Text PDF

Background: Closely related species of the carp family (Cyprinidae) have evolved distinctive abilities to survive under cold stress, but molecular mechanisms underlying the generation of cold resistance remain largely unknown. In this study, we compared transcriptomic profiles of two carp species to identify key factors and pathways for cold tolerance and acclimation.

Results: Larvae of Songpu mirror carp and Barbless carp that were pretreated at 18 °C for 24 h significantly improved their survival rates under lethal cold temperature at 8 °C or 10 °C, indicating that two carp species possess the ability of cold acclimation.

View Article and Find Full Text PDF

The oligosaccharides from agar hydrolysis have special biological activities, and exhibit application prospects in cosmetic, food and pharmaceutical industry. In this study, two novel β-agarases (AgaA and AgaB) were screened and characterized. It was found that the AgaA was an endo-type agarase which could efficiently hydrolyzed agar or agarose to form neoagarobiose (NA2), neoagarotetraose (NA4) and neoagarohexaose (NA6), while the AgaB was an exo-type and bifunctional enzyme that showed activities towards both agarose and porphyran.

View Article and Find Full Text PDF

Site-specific DNA double-strand breaks have been used to generate knock-in through the homology-dependent or -independent pathway. However, low efficiency and accompanying negative impacts such as undesirable indels or tumorigenic potential remain problematic. In this study, we present an enhanced reduced-risk genome editing strategy we named as NEO, which used either site-specific trans or cis double-nicking facilitated by four bacterial recombination factors (RecOFAR).

View Article and Find Full Text PDF

Temperature affects almost all aspects of the fish life. To cope with low temperature, fish have evolved the ability of cold acclimation for survival. However, intracellular signaling events underlying cold acclimation in fish remain largely unknown.

View Article and Find Full Text PDF

Alginase lyase is an important enzyme for the preparation of alginate oligosaccharides (AOS), that possess special biological activities and is widely used in various fields, such as medicine, food, and chemical industry. In this study, a novel bifunctional alginate lyase (AlgH) belonging to the PL7 family was screened and characterized. The AlgH exhibited the highest activity at 45 °C and pH 10.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of interleukin 6 (IL6) and specific G protein subunits (GNAI1, GNAI2, GNAI3) in the development of colitis-associated cancer (CAC) in both mice and humans.
  • Researchers used genetically modified mice to assess the effect of disrupting Gnai genes and administered substances to induce colitis and cancer, while analyzing microbiomes and immune cell populations.
  • Findings revealed that mice lacking GNAI1 and GNAI3 experienced more severe colitis and an increased number of tumors, indicating these proteins play a significant role in regulating inflammation and tumor development.
View Article and Find Full Text PDF

Constitutive promoters are important tools for gene function studies and transgenesis. The () gene promoter has been isolated from many species but remains to be cloned from the giant freshwater prawn (). In this study, we cloned and characterized the gene promoter.

View Article and Find Full Text PDF

To date, aquaporin‑4 (AQP4) has been considered as a critical contributor to neuroinflammation, but little is known about the underlying mechanism. Previous studies have shown that a critical enzyme involved in the sphingomyelin cycle, sphingosine kinase 1 (SPHK1), is implicated in inflammatory processes and contributes to chronic neuroinflammation. The present study investigated the role of AQP4 in proinflammatory cytokine release from astrocytes, with an emphasis on the SPHK1/mitogen‑activated protein kinase (MAPK)/protein kinase B (AKT) pathway.

View Article and Find Full Text PDF

Liver receptor homolog-1 (LRH-1) is an orphan nuclear receptor that is critical for the growth and proliferation of cancer cells and other biological processes, including lipid transportation and metabolism, sexual determination and steroidogenesis. However, because homozygous lrh-1 mice die in utero, the regulatory mechanisms involved in embryonic development mediated by this receptor are poorly understood. In the present study, we performed transcription activator-like effector nuclease (TALEN)-mediated loss-of-function assays, taking advantage of zebrafish external fertilization, to investigate the function of lrh-1.

View Article and Find Full Text PDF

Background: Hypoxia and temperature stress are two major adverse environmental conditions often encountered by fishes. The interaction between hypoxia and temperature stresses has been well documented and oxygen is considered to be the limiting factor for the thermal tolerance of fish. Although both high and low temperature stresses can impair the cardiovascular function and the cross-resistance between hypoxia and heat stress has been found, it is not clear whether hypoxia acclimation can protect fish from cold injury.

View Article and Find Full Text PDF

Background: Temperature is one of key environmental parameters that affect the whole life of fishes and an increasing number of studies have been directed towards understanding the mechanisms of cold acclimation in fish. However, the adaptation of larvae to cold stress and the cold-specific transcriptional alterations in fish larvae remain largely unknown. In this study, we characterized the development of cold-tolerance in zebrafish larvae and investigated the transcriptional profiles under cold stress using RNA-seq.

View Article and Find Full Text PDF