Ovarian cancer (OC) is a challenging cancer frequently detected at advanced stages. Regulatory B cells (Breg cells) can impair antitumor immunity in patients with OC. The imbalanced serum soluble CD40/CD40L pathway is associated with ovarian tumors.
View Article and Find Full Text PDFFoot-and-mouth disease (FMD) is a highly contagious and economically devastating viral disease of ruminants and swine, badly affecting the livestock industry worldwide. In clinical practice, vaccination is a frequently employed strategy to prevent foot-and-mouth disease (FMDV). However, commercial inactivated vaccines for FMD mainly rely on humoral immunity, exhibiting poor cellular immune responses and causing adverse reactions.
View Article and Find Full Text PDFThis study aims to screen and identify linear B-cell epitopes on the structural proteins of African Swine Fever Virus (ASFV) to assist in the development of peptide-based vaccines. In experiments, 66 peptides of 12 structural proteins of ASFV were predicted as potential linear B-cell epitopes using bioinformatics tools and were designed; the potential epitope proteins carried the GST tag were expressed, purified, and subjected to antigenicity analysis with porcine antiserum against ASFV, and further identified based on their immunogenicity in mice. A total of 22 potential linear B-cell epitopes showed immunoreactivity and immunogenicity.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
August 2024
African swine fever (ASF) is a highly contagious and fatal viral disease that has caused huge economic losses to the pig and related industries worldwide. At present, rapid, accurate, and sensitive laboratory detection technologies are important means of preventing and controlling ASF. However, because attenuated strains of African swine fever virus (ASFV) are constantly emerging, an ASFV antibody could be used more effectively to investigate the virus and control the disease on pig farms.
View Article and Find Full Text PDFMicrobiol Resour Announc
July 2024
The coding-complete genome sequence of bovine viral diarrhea virus (BVDV) isolate NX2023 that originated from a calf in China was determined. Phylogenetic analysis showed that the NX2023 strain belongs to the BVDV-1d subgenotype.
View Article and Find Full Text PDFIn order to develop a safe and effective broad-spectrum vaccine for foot-and-mouth disease (FMDV), here, we developed a recombinant FMD multiple-epitope trivalent vaccine based on three distinct topotypes of FMDV. Potency of the vaccine was evaluated by immune efficacy in pigs. The results showed that the vaccine with no less than 25 μg of antigen elicited FMDV serotype O specific antibodies and neutralization antibodies by primary-booster regime, and offered immune protection to pigs.
View Article and Find Full Text PDFIntroduction: African swine fever (ASF) is a highly contagious hemorrhagic fever disease in pigs caused by African swine fever virus (ASFV). It is very difficult to control and prevent ASF outbreaks due to the absence of safe and effective vaccines.
Methods: In order to develop a safe and effective ASF vaccine for the control and prevention of ASF, two ASFV recombinant vesicular stomatitis virus (VSV) live vector vaccine prototypes, containing the gene of p72, and a chimera of p30 and p54, were developed based on the replication-competent VSV, and named VSV-p72 and VSV-p35.
Background: Cervical cancer is one of the most common types of carcinoma in women and has high morbidity and mortality rates worldwide. Recurrent and metastatic disease remains difficult to treat. Receptor interacting protein kinase 1 (RIPK1) is a key molecule in mediating apoptosis, necroptosis, and inflammatory pathways downstream of death receptors and pattern recognition receptors.
View Article and Find Full Text PDFBackground: African swine fever (ASF) is a highly fatal disease in domestic pigs caused by ASF virus (ASFV), for which there is currently no commercial vaccine available. The genome of ASFV encodes more than 150 proteins, some of which have been included in subunit vaccines but only induce limited protection against ASFV challenge.
Methods: To enhance immune responses induced by ASFV proteins, we expressed and purified three fusion proteins with each consisting of bacterial lipoprotein OprI, 2 different ASFV proteins/epitopes and a universal CD4 T cell epitope, namely OprI-p30-modified p54-TT, OprI-p72 epitopes-truncated pE248R-TT, and OprI-truncated CD2v-truncated pEP153R-TT.
African swine fever virus (ASFV) is a highly infectious and lethal double-stranded DNA virus that is responsible for African swine fever (ASF). ASFV was first reported in Kenya in 1921. Subsequently, ASFV has spread to countries in Western Europe, Latin America, and Eastern Europe, as well as to China in 2018.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) causes a highly lethal hemorrhagic viral disease (ASF) of pigs that results in serious losses in China and elsewhere. The development of a vaccine and diagnosis technology for ASFV is essential to prevent and control the spread of ASF. The p72 protein of ASFV is highly immunogenic and reactive, and is a dominant antigen in ASF vaccine and diagnostic research.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2022
As a kind of reactive oxygen species, peroxynitrite is related to various diseases closely such as cancer and neurodegenerative diseases. Constructing probes with highly specific ability and a wide linear detection range for peroxynitrite detection is crucial for understanding the pathogenesis of related diseases and optimizing treatments. In this work, we developed a novel luminescent ratiometric fluorescence nanoprobe (PC-CDs) based on carbon dots and phycocyanin.
View Article and Find Full Text PDFBackground: African swine fever (ASF) is a highly fatal swine disease, which threatens the global pig industry. There is no commercially available vaccine against ASF and effective subunit vaccines would represent a real breakthrough.
Methods: In this study, we expressed and purified two recombinant fusion proteins, OPM (OprI-p30-modified p54) and OPMT (OprI-p30-modified p54-T cell epitope), which combine the bacterial lipoprotein OprI with ASF virus proteins p30 and p54.
African swine fever (ASF) is a highly fatal swine disease threatening the global pig industry. Currently, vaccine is not commercially available for ASF. Hence, it is desirable to develop effective subunit vaccines against ASF.
View Article and Find Full Text PDFBackground: Foot-and-mouth disease (FMD) is a devastating animal disease. Anti-non-structural protein (NSP) antibody detection is very important for confirming suspected cases, evaluating the prevalence of infection, certifying animals for trade and controlling the disease.
Methods: In this study, a competitive chemiluminescence immunoassay (3B-cCLIA) was developed for the rapid detection of antibodies against NSPs in different species of livestock animals using the monoclonal antibody (mAb) 9E2 as a competitive antibody that recognizes NSP 3B.
The African swine fever virus (ASFV) is a huge and complex DNA virus that can lead to the acute death of pigs and cause huge losses to the global swine industry. The CD2v protein is a transmembrane protein encoded by the ASFV's gene, which can effectively inhibit the bystander lymphocyte proliferation in response to mitogens and mediate the absorption of red blood cells to ASFV-infected cells. The CD2v protein contains repetitive amino acid sequences ([KPCPPP] labeled as RAAS), which is reported as a genetic marker and an epitope.
View Article and Find Full Text PDFBackground: African swine fever (ASF), characterized by acute, severe, and fast-spreading, is a highly lethal swine infectious disease caused by the African swine fever virus (ASFV), which has caused substantial economic losses to the pig industry worldwide in the past 100 years.
Methods: This study started with bioinformatics methods and verified the epitope fusion protein method's reliability that does not rely on traditional epitope identification. Meanwhile, it will also express and purify the constructed genes through prokaryotic expression and establish antibody detection methods.
Foot-and-mouth disease virus (FMDV) has led to serious losses in animal husbandry worldwide. Seromonitoring of FMDV postvaccination is important for the control and eradication of foot-and-mouth disease (FMD) in regions and countries where vaccination is widespread. However, many commercial kits present high false-positive rates.
View Article and Find Full Text PDFObjectives: Marc-145 cells (monkey embryonic kidney epithelial cells) play a critical role in the biotechnology industry as certain virus host cells. To investigate the expression of enhanced green fluorescent protein (eGFP) gene as a foreign gene in Marc-145 cells, which we developed an approach of foreign gene site-specific knock-in into Marc-145 cells by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and putatively explored appropriate genomic recombination sites in Marc-145 cells.
Results: Our study demonstrated that the specific homologous recombination (HR) site between the Rac GTPase activating protein 1 (RACGAP1) and the acid-sensing ion channel subunit 1 (ASIC1) genes of the 11th chromosome could be used as the target site of Cas9 for the generation of target gene knock-in into Marc-145 cells, by the insertion of the eGFP cassette into the specific HR site and subsequent expression.
Foot-and-mouth disease virus (FMDV) is an important pathogen that affects livestock breeding and causes huge economic losses worldwide. Currently, the development of antiviral agents to combat FMDV infection at the early stages is being explored. As viral replication critically depends on the host for nucleoside supply, host enzymes involved in nucleotides biosynthesis may represent potential targets for the development of antiviral agents.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2019
Foot-and-mouth disease virus (FMDV) has led to serious losses in the farming industry worldwide, particularly in cattle and swine. In developing countries, the control and eradication of FMD rely upon vaccination, in which the inactivated vaccine is predominant. In the preparation of inactivated vaccine, a series of purification methods were used to remove non-structural proteins (NSPs).
View Article and Find Full Text PDFFoot and mouth disease virus (FMDV), a member of family Picornaviridae, belongs to the genus Aphthovirus, which causes foot and mouth disease (FMD), a highly transmissible disease that affects cloven-hoof animals. In spite of the fact that efficient vaccines are available, effective antiviral molecules for FMD are needed to reduce viral infection during early stages of infection. In this study, merimepodib was found to efficiently inhibit FMDV replication in a dose-dependent manner.
View Article and Find Full Text PDFRecently, many countries, including China, have experienced a series of type A and O foot-and-mouth disease virus (FMDV) epidemics, causing serious economic losses. Although concerns about the safety of inactivated FMD vaccines have been raised, the development of a safe and effective subunit vaccine is necessary. We constructed two chimeric virus-like particles (VLPs; rHBc/AO and rHBc/AOT VLPs) displaying tandem repeats of B cell epitopes (VP1 residue 134-161 and 200-213) derived from type A and O FMDV and one T cell epitope (3 A residue 21-35) using the truncated hepatitis B virus core (HBc) carrier.
View Article and Find Full Text PDF