Publications by authors named "Junju Mu"

Supported metal in the form of single atoms, clusters, and particles can individually or jointly affect the activity of supported heterogeneous catalysts. While the individual contribution of the supported metal to the overall activity of supported photocatalysts has been identified, the joint activity of mixed metal species is overlooked because of their different photoelectric properties. Here, atomically dispersed Pd (Pd) and Pd clusters are loaded onto CdS, serving as oxidation and reduction sites for methanol dehydrogenation.

View Article and Find Full Text PDF

Multicomponent alloy (MA) contains a nearly infinite number of unprecedented active sites through entropy stabilization, which is a desired platform for exploring high-performance catalysts. However, MA catalysts are usually synthesized under severe conditions, which induce support structure collapse and further deteriorate the synergy between MA and support. We propose that a strong metal-support interaction (SMSI) could facilitate the formation of MA by establishing a tunnel of oxygen vacancy for metal atom transport under low reduction temperature (400-600 °C), which exemplifies the holistic design of MA catalysts without deactivating supports.

View Article and Find Full Text PDF

Nanoparticles exhibit unique catalytic performance, depending on their nanoscale size. However, controlling the particle size of the supported catalysts is still challenging. Here, we present a method for tunable redistribution of CuO nanoparticles on rutile TiO support by physically adding pristine TiO.

View Article and Find Full Text PDF

The hydrogenation of biomass-derived furan compounds provides a sustainable pathway for the production of various valuable chemicals; product selectivity among multiple reaction pathways of furan compound hydrogenation is crucially dependent on catalytic sites; however controlling reaction pathways remains challenging due to the lack of identification and understanding of active sites. In this work we reveal the role of base sites in furfural selective hydrogenation through deliberately designed and synthesized reversed catalysts, basic metal oxides and hydroxide on Cu. It is demonstrated that base species greatly enhanced the selectivity of 1, 2-pentanediol (1, 2-PeD) from furfural, presenting a nearly fourfold increase of 1, 2-PeD: methyl furan ratio over the Cu based reverse catalysts.

View Article and Find Full Text PDF

For industrial applications of self-assembled wormlike micelles, measurement and characterization of a micellar material's microstructure and rheology are paramount for the development and deployment of new high-performing and cost-effective formulations. Within this workflow, there are significant bottlenecks associated with experimental delays and a lack of transferability of results from one chemistry to another. In this work, we outline a process to predict microscopic and thermodynamic characteristics of wormlike micelles directly from rheological data by combining a more robust and efficient fitting algorithm with a recently published constitutive model called the Toy Shuffling model [J.

View Article and Find Full Text PDF

Recently, photo switching porous materials have been widely reported for low energy costed CO capture and release via simply remoted light controlling method. However, most reported photo responsive CO adsorbents relied on metal organic framework (MOFs) functionalisation with photochromic moieties, and MOF adsorbents still suffered from chemically and thermally unstable issues. Thus, further metal free and highly stable organic photoresponsive adsorbents are necessary to be developed.

View Article and Find Full Text PDF

There is an ever-increasing body of evidence that metallic complexes involving amphiliphic ligands do not form normal solutions in organic solvents. Instead, they form complex fluids with intricate structures. For example, the metallic complexes may aggregate into clusters, and these clusters themselves may aggregate into superclusters.

View Article and Find Full Text PDF

Photocatalytic C-C bond formation coupled with H production provides a sustainable approach to producing carbon-chain-prolonged chemicals and hydrogen energy. However, the involved radical intermediates with open-shell electronic structures are highly reactive, experiencing predominant oxidative or reductive side reactions in semiconductors. Herein, we demonstrate that hydrogen bonding on the catalyst surface and in the bulk solution can inhibit oxidation and reverse reaction of α-hydroxyethyl radicals (αHRs) in photocatalytic dehydrocoupling of ethanol over Au/CdS.

View Article and Find Full Text PDF

Fluid-fluid interfacial reactions in porous materials are pertinent to many engineering applications such as fuel cells, catalyst design, subsurface energy recovery (enhanced oil recovery), and CO storage. They have been identified to control physicochemical properties such as interfacial rheology, multiphase flow, and reaction kinetics. In recent years, engineered waterflooding has been identified as an effective way to increase hydrocarbon recovery and solid-fluid interaction has been assessed as the key mechanism.

View Article and Find Full Text PDF

Short- and long-range correlations between solutes in solvents can influence the macroscopic chemistry and physical properties of solutions in ways that are not fully understood. The class of liquids known as complex (structured) fluids-containing multiscale aggregates resulting from weak self-assembly-are especially important in energy-relevant systems employed for a variety of chemical- and biological-based purification, separation, and catalytic processes. In these, solute (mass) transfer across liquid-liquid (water, oil) phase boundaries is the core function.

View Article and Find Full Text PDF

We present evidence that the transition between organic and third phases, which can be observed in the plutonium uranium reduction extraction (PUREX) process at high metal loading, is an unusual transition between two isotropic bicontinuous microemulsion phases. As this system contains so many components, however, we have been seeking first to investigate the properties of a simpler system, namely, the related metal-free, quaternary water/n-dodecane/nitric acid/tributyl phosphate (TBP) system. This quaternary system has been shown to exhibit, under appropriate conditions, three coexisting phases: a light organic phase, an aqueous phase, and the so-called third phase.

View Article and Find Full Text PDF

A refined model for tri-n-butyl phosphate (TBP), which uses a new set of partial charges generated from our ab initio density functional theory calculations, has been proposed in this study. Molecular dynamics simulations are conducted to determine the thermodynamic properties, transport properties, and the microscopic structures of liquid TBP, TBP/water mixtures, and TBP/n-alkane mixtures. These results are compared with those obtained from four other TBP models, previously described in the literature.

View Article and Find Full Text PDF

In this work we present optimized noble gas-water Lennard-Jones 6-12 pair potentials for each noble gas. Given the significantly different atomic nature of water and the noble gases, the standard Lorentz-Berthelot mixing rules produce inaccurate unlike molecular interactions between these two species. Consequently, we find simulated Henry's coefficients deviate significantly from their experimental counterparts for the investigated thermodynamic range (293-353 K at 1 and 10 atm), due to a poor unlike potential well term (εij).

View Article and Find Full Text PDF