Publications by authors named "Junjing Deng"

Ptychography is a powerful imaging technique that is used in a variety of fields, including materials science, biology, and nanotechnology. However, the accuracy of the reconstructed ptychography image is highly dependent on the accuracy of the recorded probe positions which often contain errors. These errors are typically corrected jointly with phase retrieval through numerical optimization approaches.

View Article and Find Full Text PDF

Nanoscale structural and electronic heterogeneities are prevalent in condensed matter physics. Investigating these heterogeneities in 3D has become an important task for understanding material properties. To provide a tool to unravel the connection between nanoscale heterogeneity and macroscopic emergent properties in magnetic materials, scanning transmission X-ray microscopy (STXM) is combined with X-ray magnetic circular dichroism.

View Article and Find Full Text PDF

In the realm of X-ray ptychography experiments, a considerable amount of ptychography scans are typically performed within a field of view encompassing the target sample. While it is crucial to obtain overlapping scans in small increments over the region of interest for achieving high-resolution sample reconstruction, a significant number of these scans often redundantly measure the empty background within the wide field of view. To address this inefficiency, an innovative algorithm is proposed that introduces automatic guidance for data acquisition.

View Article and Find Full Text PDF

X-ray ptychography offers high-resolution imaging of large areas at a high computational cost due to the large volume of data provided. To address the cost issue, we propose a physics-informed unsupervised classification algorithm that is performed prior to reconstruction and removes data outside the region of interest (RoI) based on the multimodal features present in the diffraction patterns. The preprocessing time for the proposed method is inconsequential in contrast to the resource-intensive reconstruction process, leading to an impressive reduction in the data workload to a mere 20% of the initial dataset.

View Article and Find Full Text PDF

Steelmaking contributes 8% to the total CO emissions globally, primarily due to coal-based iron ore reduction. Clean hydrogen-based ironmaking has variable performance because the dominant gas-solid reduction mechanism is set by the defects and pores inside the mm- to nm-sized oxide particles that change significantly as the reaction progresses. While these governing dynamics are essential to establish continuous flow of iron and its ores through reactors, the direct link between agglomeration and chemistry is still contested due to missing measurements.

View Article and Find Full Text PDF

A fast charge-integrating detector has been showcased for high-resolution X-ray ptychography. The advancement in developing detectors of this kind, with rapid framing capabilities, holds paramount significance in harnessing the full potential of emerging diffraction-limited synchrotron sources for X-ray nanoimaging.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers used X-ray ptychographic tomography and small-angle X-ray scattering to visualize and map the internal structures of supercrystals made up of DNA-functionalized nanoparticles.
  • The study found that supercrystals from smaller nanoparticles are generally smaller and can form larger "necklace-like" aggregates, while larger nanoparticles tend to create distinct, faceted crystals.
  • This research indicates that supercrystal growth occurs through the aggregation of smaller structures and then a rearrangement of the nanoparticles.
View Article and Find Full Text PDF

Noninvasive X-ray imaging of nanoscale three-dimensional objects, such as integrated circuits (ICs), generally requires two types of scanning: ptychographic, which is translational and returns estimates of the complex electromagnetic field through the IC; combined with a tomographic scan, which collects these complex field projections from multiple angles. Here, we present Attentional Ptycho-Tomography (APT), an approach to drastically reduce the amount of angular scanning, and thus the total acquisition time. APT is machine learning-based, utilizing axial self-Attention for Ptycho-Tomographic reconstruction.

View Article and Find Full Text PDF

Interactions between the microbiota and their colonized environments mediate critical pathways from biogeochemical cycles to homeostasis in human health. Here we report a soil-inspired chemical system that consists of nanostructured minerals, starch granules and liquid metals. Fabricated via a bottom-up synthesis, the soil-inspired chemical system can enable chemical redistribution and modulation of microbial communities.

View Article and Find Full Text PDF

Scanning of lightweight circular diffractive optics, separate from central stops and apertures, is emerging as an approach to exploit advances in synchrotron x-ray sources. We consider the effects in a scanning microscope of offsets between the optic and its central stop and find that scan ranges of up to about half the diameter of the optic are possible with only about a 10% increase in the focal spot width. For large scanning ranges, we present criteria for the working distance between the last aperture and the specimen to be imaged.

View Article and Find Full Text PDF

As a coherent diffraction imaging technique, ptychography provides high-spatial resolution beyond Rayleigh's criterion of the focusing optics, but it is also sensitively affected by the decoherence coming from the spatial and temporal variations in the experiment. Here we show that high-speed ptychographic data acquisition with short exposure can effectively reduce the impact from experimental variations. To reach a cumulative dose required for a given resolution, we further demonstrate that a continuous multi-pass scan via high-speed ptychography can achieve high-resolution imaging.

View Article and Find Full Text PDF

Single-crystal Ni-rich Li[NiMnCo]O (SC-NMC) cathodes represent a promising approach to mitigate the cracking issue of conventional polycrystalline cathodes. However, many reported SC-NMC cathodes still suffer from unsatisfactory cycling stability, particularly under high charge cutoff voltage and/or elevated temperature. Herein, we report an ultraconformal and durable poly(3,4-ethylenedioxythiophene) (PEDOT) coating for SC-NMC cathodes using an oxidative chemical vapor deposition (oCVD) technique, which significantly improves their high-voltage (4.

View Article and Find Full Text PDF

We study the assembly of DNA-functionalized nanocubes under lateral confinement in microscale square trenches on a DNA-functionalized substrate. Microfocus small-angle X-ray scattering (SAXS) and scanning electron microscopy (SEM) are used to characterize the superlattices (SLs). The results indicate that nanocubes form simple-cubic SLs with square-prism morphology and a (100) out-of-plane orientation to maximize DNA bonding.

View Article and Find Full Text PDF

Background: Neuroblastoma is the most common extracranial solid malignancy in childhood which, despite the current progress in radiotherapy and chemotherapy protocols, still has a high mortality rate in high risk tumors. Nanomedicine offers exciting and unexploited opportunities to overcome the shortcomings of conventional medicine. The photocatalytic properties of FeO core-TiO shell nanocomposites and their potential for cell specific targeting suggest that nanoconstructs produced using FeO core-TiO shell nanocomposites could be used to enhance radiation effects in neuroblastoma.

View Article and Find Full Text PDF

Research in cancer nanotechnology is entering its third decade, and the need to study interactions between nanomaterials and cells remains urgent. Heterogeneity of nanoparticle uptake by different cells and subcellular compartments represent the greatest obstacles to a full understanding of the entire spectrum of nanomaterials' effects. In this work, we used flow cytometry to evaluate changes in cell cycle associated with non-targeted nanocomposite uptake by individual cells and cell populations.

View Article and Find Full Text PDF

Examining chemical and structural characteristics of micro-features in complex tissue matrices is essential for understanding biological systems. Advances in multimodal chemical and structural imaging using synchrotron radiation have overcome many issues in correlative imaging, enabling the characterization of distinct microfeatures at nanoscale resolution in tissues. We present a nanoscale imaging method that pairs X-ray ptychography and X-ray fluorescence microscopy (XFM) to simultaneously examine structural features and quantify elemental content of microfeatures in complex tissues.

View Article and Find Full Text PDF

We describe and demonstrate an optimization-based X-ray image reconstruction framework called Adorym. Our framework provides a generic forward model, allowing one code framework to be used for a wide range of imaging methods ranging from near-field holography to fly-scan ptychographic tomography. By using automatic differentiation for optimization, Adorym has the flexibility to refine experimental parameters including probe positions, multiple hologram alignment, and object tilts.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) is hard to treat due to the challenges posed by blood-brain barriers and a lack of targeted therapies.
  • Researchers developed a new treatment using spherical nucleic acids (SNAs) made of gold nanoparticles that deliver siRNA to target a specific GBM oncogene, Bcl2L12.
  • A clinical trial showed that this approach is safe, allows the SNAs to penetrate tumors, and leads to a decrease in the target protein in glioma cells, marking a promising step for GBM treatment.
View Article and Find Full Text PDF

Ptychography is a rapidly developing scanning microscopy which is able to view the internal structures of samples at a high resolution beyond the illumination size. The achieved spatial resolution is theoretically dose-limited. A broadband source can provide much higher flux compared with a monochromatic source; however, it conflicts with the necessary coherence requirements of this coherent diffraction imaging technique.

View Article and Find Full Text PDF

X-ray ptychography is a rapidly developing coherent diffraction imaging technique that provides nanoscale resolution on extended field-of-view. However, the requirement of coherence and the scanning mechanism limit the throughput of ptychographic imaging. In this paper, we propose X-ray ptychography using multiple illuminations instead of single illumination in conventional ptychography.

View Article and Find Full Text PDF

Single-crystal cathode materials for lithium-ion batteries have attracted increasing interest in providing greater capacity retention than their polycrystalline counterparts. However, after being cycled at high voltages, these single-crystal materials exhibit severe structural instability and capacity fade. Understanding how the surface structural changes determine the performance degradation over cycling is crucial, but remains elusive.

View Article and Find Full Text PDF

State-of-the-art halide perovskite solar cells have bandgaps larger than 1.45 eV, which restricts their potential for realizing the Shockley-Queisser limit. Previous search for low-bandgap (1.

View Article and Find Full Text PDF

Motivated by the advanced photon source upgrade, a new hard X-ray microscope called "Velociprobe" has been recently designed and built for fast ptychographic imaging with high spatial resolution. We are addressing the challenges of high-resolution and fast scanning with novel hardware designs, advanced motion controls, and new data acquisition strategies, including the use of high-bandwidth interferometric measurements. The use of granite, air-bearing-supported stages provides the necessary long travel ranges for coarse motion to accommodate real samples and variable energy operation while remaining highly stable during fine scanning.

View Article and Find Full Text PDF

High spatial resolution is the goal of many imaging systems. While designing a high-resolution lens with diffraction-limited performance over a large field of view remains a difficult task, creating a complex speckle pattern with wavelength-limited spatial features is easily accomplished with a simple random diffuser. With this observation and the concept of near-field ptychography, we report a new imaging modality, termed near-field Fourier ptychography, to address high-resolution imaging challenges in both microscopic and macroscopic imaging settings.

View Article and Find Full Text PDF

The development of commercially friendly and stable catalysts for oxygen reduction reaction (ORR) is critical for many energy conversion systems such as fuel cells and metal-air batteries. Many Co-based perovskite oxides such as LaCoO have been discovered as the stable and active ORR catalysts, which can be good candidates to replace platinum (Pt). Although researchers have tried substituting various transition metals into the Co-based perovskite catalysts to improve the ORR performance, the influence of substitution on the ORR mechanism is rarely studied.

View Article and Find Full Text PDF