Correction for ' vascularized liver tumor model based on a microfluidic inverse opal scaffold for immune cell recruitment investigation' by Pingwei Xu , , 2024, , 3470-3479, https://doi.org/10.1039/D4LC00341A.
View Article and Find Full Text PDFLiver cancer, characterized as a kind of malignant tumor within the digestive system, poses great health harm, and immune escape stands out as an important reason for its occurrence and development. Chemokines, pivotal in guiding immune cells' migration, is necessary to initiate and deliver an effective anti-tumor immune response. Therefore, understanding the chemotactic environment and identifying chemokines that regulate recruitment of immune cells to the tumor microenvironment (TME) are critical to improve current immunotherapy interventions.
View Article and Find Full Text PDFMost antimicrobials treat wound infections by an oxidation effect, which is induced by the generation of reactive oxygen species (ROS). However, the potential harm of the prolonged high level of ROS should not be ignored. In this study, we presented a novel cascade-reaction nanoparticle, Ir@Cu/Zn-MOF, to effectively regulate the ROS level throughout the healing progress of the infected wound.
View Article and Find Full Text PDFSeeking a potent therapeutic strategy for alleviating atopic dermatitis (AD) attack and preventing its recurrence is highly desired but remains challenging in clinical practice. Here, we propose an inflammation-responsive double-layer microneedle (IDMN) patch in situ delivering VD for recurrent AD therapy. IDMN comprises the backing layer part and the double-layer microneedle part, in which the inner layer is gelatin methacryloyl (GelMA) loaded with VD while the outer layer is composed of hyaluronic acid (HA).
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2023
Translational medicine aims to improve human health by exploring potential treatment methods developed during basic scientific research and applying them to the treatment of patients in clinical settings. The advanced perceptions of gene functions have remarkably revolutionized clinical treatment strategies for target agents. However, the progress in gene editing therapy has been hindered due to the severe off-target effects and limited editing sites.
View Article and Find Full Text PDFJ Nanobiotechnology
November 2022
A film with elaborate microstructures that offers biomimetic properties and multi functionalities is highly desired in wound healing. Here, we develop an aligned hydrogel fiber film integrated with multi-active constituents to promote wound healing. Such fiber films are designed and constructed by photo-crosslinking the methacrylate gelatin (GelMA) doped with silver nanoparticles (Ag NPs) and iridium nanoparticles coated with polyvinylpyrrolidone (PVP-Ir NPs) in the precursor solution using electrospinning.
View Article and Find Full Text PDFResearch (Wash D C)
February 2022
[This corrects the article DOI: 10.34133/2019/9783793.].
View Article and Find Full Text PDFBenefiting from the remarkable wettability heterogeneity, bio-inspired wettability patterns present a progressive and versatile platform for manipulating and patterning liquids, which provides an emerging strategy for operating liquid samples with crucial values in biomedical applications. In this review, we present a general summary of bio-inspired wettability patterns. After a compendious introduction of natural wettability phenomena and their underlying mechanisms, we summarize the general design principles and fabrication methods for preparing artificial wettability materials.
View Article and Find Full Text PDFPatches with the capacity of controllable delivering active molecules toward the wound bed to promote wound healing are expectant all along. Herein, a novel porous metal-organic framework (MOF) microneedle (MN) patch enabling photothermal-responsive nitric oxide (NO) delivery for promoting diabetic wound healing is presented. As the NO-loadable copper-benzene-1,3,5-tricarboxylate (HKUST-1) MOF is encapsulated with graphene oxide (GO), the resultant NO@HKUST-1@GO microparticles (NHGs) are imparted with the feature of near-infrared ray (NIR) photothermal response, which facilitate the controlled release of NO molecules.
View Article and Find Full Text PDFDroplet microfluidic technology provides a new platform for controllable generation of microdroplets and droplet-derived materials. In particular, because of the ability in high-throughput production and accurate control of the size, structure, and function of these materials, droplet microfluidics presents unique advantages in the preparation of functional microcarriers, i.e.
View Article and Find Full Text PDFThe detection of biomarkers in body fluids plays a great role in the diagnosis, treatment, and prognosis of diseases. Here, we present novel aptamer-decorated porous microneedles (MNs) arrays to realize the extraction and detection of biomarkers in skin interstitial fluid (ISF) in situ. The porous MNs arrays are fabricated by replicating the negative molds comprising glass microspheres with a UV-curable ethoxylated trimethylolpropane triacrylate (ETPTA).
View Article and Find Full Text PDFAn infected skin wound caused by external injury remains a serious challenge in clinical practice. Wound dressings with the properties of antibacterial activity and potent regeneration capacity are highly desirable for wound healing. In this paper, a degradable, ductile, and wound-friendly Zn-MOF encapsulated methacrylated hyaluronic acid (MeHA) microneedles (MNs) array is fabricated through the molding method for promoting wound healing.
View Article and Find Full Text PDFTraditional Chinese medicine and Chinese herbs have a demonstrated value for disease therapy and sub-health improvement. Attempts in this area tend to develop new forms to make their applications more convenient and wider. Here, we propose a novel Chinese herb microneedle (CHMN) patch by integrating the herbal extracts, and , with microstructure of microneedle for wound healing.
View Article and Find Full Text PDFMicroneedles represent a cutting-edge and idea-inspiring technology in biomedical engineering, which have attracted increasing attention of scientific researchers and medical staffs. Over the past decades, numerous great achievements have been made. The fabrication process of microneedles has been simplified and becomes more precise, easy-to-operate, and reusable.
View Article and Find Full Text PDFPD1/PD-L1 antibody blockade-based immunotherapy has been widely recognized in the field of cancer treatment; however, only a small number of cancer patients have been shown to respond well due to the PD1/PD-L1 antibody hydrolysis induced substandard immunotherapeutic efficacy and the low immunogenicity and immunosuppressive tumor microenvironment of the patients. Here, we present a novel tumor microenvironment (TME) responsive particle delivery system with a metformin-loaded chitosan (CS) inverse opal core and a manganese dioxide (MnO) shell (denoted as CS-metformin@MnO particles) for inhibiting the PD-1/PD-L1 signaling pathway and promoting tumor immunotherapy. Benefiting from the interconnected porous structure of the inverse opal, metformin can be easily extensively loaded into the CS particles.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
A film with an elaborate microstructure and multifunctions is urgently needed in wound healing. Here, we present a multiactive encapsulated inverse opal film with a monitorable delivery system for chronic wound healing. The inverse opal film is prepared by using poly(lactic--glycolic acid) to negatively replicate a colloidal crystal template, which presents a high specific surface area and interconnected nanopores.
View Article and Find Full Text PDFEnabled by the coffee-ring effect, a paper-based signal transduce method is employed for catalytic hairpin assembly (CHA) amplification and hybridization chain reaction (HCR) to achieve miRNA quantification. Once the target miRNAs appeared, it was circularly used by CHA to initiate HCR amplification to produce a large number of G-quadruplex, which is combined with hemin to form a hemin/G-quadruplex DNAzyme. The DNAzyme catalyzes a colorimetric reaction to produce colored nanoparticles, which were converted to the end edge of the paper by evaporation-driven flow, forming a visible colored band.
View Article and Find Full Text PDFA patch with the capability of avoiding wound infection and promoting tissue remolding is of great value for wound healing. In this paper, we develop a biomass chitosan microneedle array (CSMNA) patch integrated with smart responsive drug delivery for promoting wound healing. Chitosan possesses many outstanding features such as the natural antibacterial property and has been widely utilized for wound healing.
View Article and Find Full Text PDFPerspiration contains valuable information indicating physiological health. For most wearable perspiration sensors, the sensing element contacts with skin directly. Yet lack of precise fluidic manipulation unit limits accurate and continuous analysis considering perspiration aggregation, evaporation loss and electrolyte reabsorption by sweat glands.
View Article and Find Full Text PDFResearch (Wash D C)
October 2019
Three-dimensional (3D) porous scaffolds have a demonstrated value for tissue engineering and regenerative medicine. Inspired by the predation processes of marine predators in nature, we present new photocontrolled shrinkable inverse opal graphene oxide (GO) hydrogel scaffolds for cell enrichment and 3D culture. The scaffolds with adjustable pore sizes and morphologies were created using a GO and N-isopropylacrylamide dispersed solution as a continuous phase of microfluidic emulsions for polymerizing and replicating.
View Article and Find Full Text PDFCorrection for 'A bio-inspired photonic nitrocellulose array for ultrasensitive assays of single nucleic acids' by Junjie Chi, et al., Analyst, 2018, 143, 4559-4565.
View Article and Find Full Text PDFHerein, a chip imitating the desert beetle shell was presented for naked eye nucleic acid quantification. The hydrophobic photonic crystal substrate treated by ultraviolet local irradiation could effectively disperse the sample into hundreds of droplets for digital loop-mediated isothermal amplification (dLAMP). Pyrophosphate (PPI), a by-product of the LAMP reaction, combined with magnesium ions to form a poorly soluble precipitate.
View Article and Find Full Text PDFExtracellular vesicles (EVs), involved in many diseases and pathophysiological processes, have emerged as potential biomarkers for cancer diagnosis. However, efficient isolation and detection of EVs still remain challenging. Here, we report an integrated chip for isolation of EVs with a double-filtration unit and ultrasensitive detection using photonic crystal (PC) nanostructure.
View Article and Find Full Text PDFStructural color hydrogels with healable capability are of great significance in many fields, however the controllability of these materials still needs optimizing. Thus, this work presents a healable structural color hydrogel with photocontrolling properties. The component parts of the hydrogel are a graphene oxide (GO) integrated inverse opal hydrogel scaffold and a hydrogel filler with reversible phase transition.
View Article and Find Full Text PDFMagnetically responsive colloidal crystal films with gradient structural colors have a significant value in optical applications via controllable external stimuli. Herein, we propose a practical method for fabricating colloidal crystal hydrogel films with continuous gradient structural colors by using superparamagnetic colloidal nanoparticles. The colloidal nanoparticles could self-assemble into chain-like non-close-packed arrays to present structural colors under the stimuli of external magnetic fields.
View Article and Find Full Text PDF