For group 14 mono-elemental 2D materials, such as silicene, germanene, and stanene, oxidation is a severe problem that alters or degrades their physical properties. This study shows that the oxidized germanene on Ag(111)/Ge(111) can be reformed to germanene by simple heating ≈500 °C in a vacuum. The key reaction in reforming germanene is the desorption of GeO and GeO during heating ≈350 °C.
View Article and Find Full Text PDFHerein, oxide quasicrystal-related (OQC-R) structure and Ce-Ti-O-(3 × 3) superstructure ultrathin films were prepared on Pt(111) and characterized using scanning tunneling microscopy (STM) and low-energy electron diffraction. The OQC-R structure with dodecagonal clusters consisting of triangles, squares, and rhombuses was observed in STM images. The first discovery of the OQC-R structure with a magnetic rare earth metal expands the possibility of discovering new oxide quasicrystals with novel magnetism or superconductivity.
View Article and Find Full Text PDFWhile theoretical studies predicted the stability and exotic properties of plumbene, the last group-14 cousin of graphene, its realization has remained a challenging quest. Here, it is shown with compelling evidence that plumbene is epitaxially grown by segregation on a Pd Pb (111) alloy surface. In scanning tunneling microscopy (STM), it exhibits a unique surface morphology resembling the famous Weaire-Phelan bubble structure of the Olympic "WaterCube" in Beijing.
View Article and Find Full Text PDFLarge-scale two-dimensional sheets of graphene-like germanium, namely, germanene, have been epitaxially prepared on Ag(111) thin films grown on Ge(111), using a segregation method, differing from molecular beam epitaxy used in previous reports. From the scanning tunneling microscopy (STM) images, the surface is completely covered with an atom-thin layer showing a highly ordered long-range superstructure in wide scale. Two types of protrusions, named hexagon and line, form a (7√7 × 7√7) R19.
View Article and Find Full Text PDFThe geometric structure of ultra-thin cerium oxide films on Rh(111), prepared by annealing the metallic cerium films at a very low coverage between 0.3 and 1.5 monolayers in an oxygen atmosphere, is investigated using scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations.
View Article and Find Full Text PDF