Optical enhancement cavities enabling laser pulses to be coherently stacked in free space are used in several applications to enhance accessible optical power. In this study, we develop an optical cavity that accumulates harmonically mode-locked laser pulses with a self-resonating mechanism for X-ray sources based on laser-Compton scattering. In particular, a Fabry-Perot cavity composed of 99% reflectance mirrors maintained the optical resonance in a feedback-free fashion for more than half an hour and automatically resumed the accumulation even if the laser oscillation was suspended.
View Article and Find Full Text PDFPurpose: Monochromatic hard X-rays with high brightness are desired for medical applications including Auger therapy. One can generate such X-rays through laser-Compton scattering (LCS) by allowing photons from a compact laser system to interact with electrons accelerated by a compact electron accelerator. In this paper, after a brief description of laser-Compton X-ray sources, a scheme called crab crossing to enhance the X-ray intensity is proposed.
View Article and Find Full Text PDFWe describe the stabilization technique of an optical enhancement cavity using a counter propagating mode. The burst amplification of the injection laser in the main path induces a drastic change in the laser intensity and disturbs the stabilization of the enhancement cavity. We have used a counter propagating mode to achieve a 4% intensity jitter and 0.
View Article and Find Full Text PDFWe generated low-flux X-ray micro-planar beams (MPBs) using a laboratory-scale industrial X-ray generator (60 kV/20 mA) with custom-made collimators with three different peak/pitch widths (50/200 μm, 100/400 μm, 50/400 μm). To evaluate normal skin reactions, the thighs of C3H/HeN mice were exposed to 100 and 200 Gy MPBs in comparison with broad beams (20, 30, 40, 50, 60 Gy). Antitumor effects of MPBs were evaluated in C3H/HeN mice with subcutaneous tumors (SCCVII).
View Article and Find Full Text PDFWe represent the first experimental observation of the point spread function (PSF) of optical transition radiation (OTR) performed at KEK-Accelerator Test Facility extraction line. We have demonstrated that the PSF vertical polarization component has a central minimum with a two lobe distribution. However, the distribution width varied significantly with wavelength.
View Article and Find Full Text PDFX-ray generation based on laser-electron Compton scattering is one attractive method to achieve a compact laboratory-sized high-brightness x-ray source. We have designed, built, and tested such a source; it combines a 50 MeV multibunch electron linac with a mode-locked 1064 nm laser stored and amplified in a Fabry-Perot optical cavity. We directly observed trains of pulsed x rays using a microchannel plate detector; the resultant yield was found to be 1.
View Article and Find Full Text PDFA free relativistic electron in an electromagnetic field is a pure case of a light-matter interaction. In the laboratory environment, this interaction can be realized by colliding laser pulses with electron beams produced from particle accelerators. The process of single photon absorption and reemission by the electron, so-called linear Thomson scattering, results in radiation that is Doppler shifted into the x-ray and gamma-ray regions.
View Article and Find Full Text PDFAn experiment on the investigation of optical diffraction radiation (ODR) from a slit target as a possible tool for noninvasive electron beam-size diagnostics has been performed at the KEK accelerator test facility. The experimental setup has been installed at the diagnostics section of the extraction line. We have performed the first incoherent ODR observation from a slit target.
View Article and Find Full Text PDF