Publications by authors named "Junji Sugiyama"

Two novel Gram-stain-negative, strictly aerobic, halophilic and non-motile bacterial strains, designated NKW23 and NKW57, were isolated from a brittle star collected from a tidal pool in Wakayama, Japan. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that NKW23 represented a member of the family , with CAU 1123 as its closest relative (94.4% sequence identity).

View Article and Find Full Text PDF

Vascular bundles of bamboo are determinants for mechanical properties of bamboo material and for physiological properties of living bamboo. The morphology of vascular bundles reflecting mechanical and physiological functions differs not only within internode tissue but also among different internodes in the culm. Although the distribution of vascular bundle fibers has received much attention, quantitative evaluation of the morphological transformation of vascular bundles associated with spatial distribution patterns has been limited.

View Article and Find Full Text PDF

Woody cells, such as tracheids, fibers, vessels, rays etc., have unique structural characteristics such as nano-scale ultrastructure represented by multilayers, microfibril angle (MFA), micro-scale anatomical properties and spatial arrangement. Simultaneous evaluation of the above indices is very important for their adequate quantification and extracting the effects of external stimuli from them.

View Article and Find Full Text PDF

Sorghum has been recognized as a promising energy crop. The composition and structure of lignin in the cell wall are important factors that affect the quality of plant biomass as a bioenergy feedstock. Silicon (Si) supply may affect the lignin content and structure, as both Si and lignin are possibly involved in plant mechanical strength.

View Article and Find Full Text PDF

The remarkable developments in computer vision and machine learning have changed the methodologies of many scientific disciplines. They have also created a new research field in wood science called computer vision-based wood identification, which is making steady progress towards the goal of building automated wood identification systems to meet the needs of the wood industry and market. Nevertheless, computer vision-based wood identification is still only a small area in wood science and is still unfamiliar to many wood anatomists.

View Article and Find Full Text PDF

Manipulating functional stimuli-responsive materials has been a hot topic in the research of smart sensors and anticounterfeiting encryption. Here, a novel functional chiral nematic cellulose nanocrystal (CNC) film showing dual responsiveness to humidity and formaldehyde gas was fabricated. The chiral nematic CNC iridescent film could respond to environmental humidity and formaldehyde gas changes by reversible motion.

View Article and Find Full Text PDF

The anatomical structure of wood is complex and contains considerable information about its specific species, physical properties, growth environment, and other factors. While conventional wood anatomy has been established by systematizing the xylem anatomical features, which enables wood identification generally up to genus level, it is difficult to describe all the information comprehensively. This study apply two computer vision approaches to optical micrographs: the scale-invariant feature transform algorithm and connected-component labelling.

View Article and Find Full Text PDF

A method for the high-throughput analysis of the relative lignin contents of Cryptomeria japonica samples over a wide concentration range (3-73%), independent of the type of chemical pretreatment, was developed by using Fourier transform infrared spectroscopy. First, the assignments of the infrared absorbance related to lignin were reviewed. Then, various chemical treatments, including alkaline, acid, and hydrothermal processes, and a sodium chlorite oxidation treatment, were performed to prepare samples containing a wide range of different lignin contents.

View Article and Find Full Text PDF

The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose.

View Article and Find Full Text PDF

Cellulose, a main component of cell walls, generally makes materials hard and brittle. However, an ultratough, cellulosic material is found in nature: cherry bark. Surprisingly, it elongates by more than twice of its initial length and behaves as a plastic film during stretching.

View Article and Find Full Text PDF

Chara is a genus of freshwater alga that is evolutionarily observed at the aquatic-terrestrial boundary, whose cellulose microfibrils are similar to those of terrestrial plants regarding the crystallinity and biosynthesis of cellulose. Oven-dried and never-dried celluloses samples were prepared from chara. Terrestrial plant cellulose samples were used as references.

View Article and Find Full Text PDF

We investigated the crystal structure and molecular arrangement of the linear (1→3)-α-d-glucan synthesized by glucosyltransferase GtfJ cloned from Streptococcus salivarius using sucrose as a substrate. The synthetic products had two morphologies: wavy fibril-like crystals as major and thin lamellae as minor products. Their structures were analyzed using electron microdiffraction, synchrotron X-ray powder diffraction, and solid-state C NMR spectroscopy.

View Article and Find Full Text PDF

Amphiphilic block polypeptides of poly(sarcosine)-b-(l-Val-Aib) and poly(sarcosine)-b-(l-Leu-Aib) and their stereoisomers were self-assembled in water. Three kinds of binary systems of poly(sarcosine)-b-(l-Leu-Aib) with poly(sarcosine)-b-poly(d-Leu-Aib), poly(sarcosine)-b-poly(l-Val-Aib), or poly(sarcosine)-b-(d-Val-Aib) generated vesicles of ca. 200 nm diameter.

View Article and Find Full Text PDF

Composite materials mimicking the plant cell wall structure were made by culturing cellulose-producing bacteria together with secondary-wall hemicelluloses from wood. The effects of spruce galactoglucomannan (GGM) and beech xylan on the nanoscale morphology of bacterial cellulose were studied in the original, hydrated state with small-angle X-ray scattering (SAXS). The SAXS intensities were fitted with a model covering multiple levels of the hierarchical structure.

View Article and Find Full Text PDF

Cellulose is one of the most abundant biological polymers on Earth, and is synthesized by the cellulose synthase complex in cell membranes. Although many cellulose synthase genes have been identified over the past 25 years, functional studies of cellulose synthase using recombinant proteins have rarely been conducted. In this study, we conducted a functional analysis of cellulose synthase with site-directed mutagenesis, by using recombinant cellulose synthase reconstituted in living Escherichia coli cells that we recently constructed (cellulose-synthesizing E.

View Article and Find Full Text PDF

Cyclic tri-β-peptide having tetrathiafulvalene (TTF) at the side chain was synthesized to prepare a peptide nanotube aligning TTF side chains along the nanotube. The polarized light microscopic observations revealed crystallization of the cyclic peptide by the vapor diffusion method. Fourier-transform infrared and electron diffraction measurements of the crystals clarified formation of homogeneous hydrogen bonds making a columnar structure with a layer spacing of 4.

View Article and Find Full Text PDF

Cellulose was synthesized by cellulose synthases extracted from the Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus). The effects of temperature and centrifugation of the reaction solution on the synthesis products were investigated. Cellulose with number-average degree of polymerization (DPn) roughly in the range 60-80 and cellulose II crystal structure was produced under all conditions.

View Article and Find Full Text PDF

Cellulose is a high molecular weight polysaccharide of β1 → 4-d-glucan widely distributed in nature-from plant cell walls to extracellular polysaccharide in bacteria. Cellulose synthase, together with other auxiliary subunit(s) in the cell membrane, facilitates the fibrillar assembly of cellulose polymer chains into a microfibril. The gene encoding the catalytic subunit of cellulose synthase is cesA and has been identified in many cellulose-producing organisms.

View Article and Find Full Text PDF

Unsymmetrical vesicular membranes were prepared from a binary mixture of the A3B-type and the AB-type host polypeptides, which were composed of the hydrophilic block (A) and the hydrophobic helical block (B) but with a different helix sense between the two host polypeptides. TEM and DLS revealed the formation of vesicles with ca. 100 nm diameter.

View Article and Find Full Text PDF

pH-Responsive molecular assemblies with a variation in morphology ranging from a twisted ribbon, a helical ribbon, to a nanotube were prepared from a novel A3B-type amphiphilic peptide having three hydrophilic poly(sarcosine) (A block) chains, a hydrophobic helical dodecapeptide (B block), and two histidine (His) residues between the A3 and B blocks. The A3B-type peptide adopted morphologies of the twisted ribbon at pH 3.0, the helical ribbon at pH 5.

View Article and Find Full Text PDF

Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides.

View Article and Find Full Text PDF

Background: Plant pathogens secrete enzymes that degrade plant cell walls to enhance infection and nutrient acquisition.

Results: A novel endotransglucosylase catalyzes cleavage and transfer of β-glucans and decreases the physical strength of plant cell walls.

Conclusion: Endotransglucosylation causes depolymerization and polymerization of β-glucans, depending on substrate molecular size.

View Article and Find Full Text PDF

Cellulases are enzymes that normally digest cellulose; however, some are known to play essential roles in cellulose biosynthesis. Although some endogenous cellulases of plants and cellulose-producing bacteria are reportedly involved in cellulose production, their functions in cellulose production are unknown. In this study, we demonstrated that disruption of the cellulase (carboxymethylcellulase) gene causes irregular packing of de novo-synthesized fibrils in Gluconacetobacter xylinus, a cellulose-producing bacterium.

View Article and Find Full Text PDF

A pH-responsive rolled-sheet morphology was prepared from a triskelion A(2)B-type amphiphilic polypeptide having a histidine residue as a pH-responsive unit. The dimensions of the rolled sheet were 85 nm diameter and 210 nm length with a sheet turn number of 2.0 at pH 7.

View Article and Find Full Text PDF