Publications by authors named "Junji Koya"

Extranodal NK/T-cell lymphoma (ENKTCL) is an Epstein-Barr virus (EBV)-related neoplasm preferentially involving the upper aerodigestive tract. Here we show that NK-cell-specific Trp53 disruption in mice leads to the development of NK-cell lymphomas after long latency, which involve not only the hematopoietic system but also the salivary glands. Before tumor onset, Trp53 knockout causes extensive gene expression changes, resulting in immature NK-cell expansion, exclusively in the salivary glands.

View Article and Find Full Text PDF

Adult T-cell leukemia/lymphoma (ATLL) is an aggressive peripheral T-cell malignancy caused by human T-cell leukemia virus type-1 (HTLV-1) infection. Genetic alterations are thought to contribute to the pathogenesis of ATLL alongside HTLV-1 products such as Tax and HBZ. Several large-scale genetic analyses have delineated the entire landscape of somatic alterations in ATLL, which is characterized by frequent alterations in T-cell receptor/NF-κB pathways and immune-related molecules.

View Article and Find Full Text PDF

Extranodal NK/T-cell lymphoma (ENKTCL) is an Epstein-Barr virus (EBV)-related neoplasm with male dominance and a poor prognosis. A better understanding of the genetic alterations and their functional roles in ENKTCL could help improve patient stratification and treatments. In this study, we performed a comprehensive genetic analysis of 178 ENKTCL cases to delineate the landscape of mutations, copy number alterations (CNA), and structural variations, identifying 34 driver genes including six previously unappreciated ones, namely, HLA-B, HLA-C, ROBO1, CD58, POT1, and MAP2K1.

View Article and Find Full Text PDF

Unlabelled: Using 48,627 samples from the Center for Cancer Genomics and Advanced Therapeutics (C-CAT), we present a pan-cancer landscape of driver alterations and their clinical actionability in Japanese patients. Comparison with White patients in Genomics Evidence Neoplasia Information Exchange (GENIE) demonstrates high TP53 mutation frequencies in Asian patients across multiple cancer types. Integration of C-CAT, GENIE, and The Cancer Genome Atlas data reveals many cooccurring and mutually exclusive relationships between driver mutations.

View Article and Find Full Text PDF

Patients with von Hippel-Lindau disease (vHL) are at risk of developing spatially and temporally multiple clear cell renal cell carcinomas (ccRCCs), which offers a valuable opportunity to analyze inter- and intra-tumor heterogeneity of genetic and immune profiles within the same patient. Here, we perform whole-exome and RNA sequencing, digital gene expression, and immunohistochemical analyses for 81 samples from 51 ccRCCs of 10 patients with vHL. Inherited ccRCCs are clonally independent and have less genomic alterations than sporadic ccRCCs.

View Article and Find Full Text PDF

We present our novel software, nanomonsv, for detecting somatic structural variations (SVs) using tumor and matched control long-read sequencing data with a single-base resolution. The current version of nanomonsv includes two detection modules, Canonical SV module, and Single breakend SV module. Using tumor/control paired long-read sequencing data from three cancer and their matched lymphoblastoid lines, we demonstrate that Canonical SV module can identify somatic SVs that can be captured by short-read technologies with higher precision and recall than existing methods.

View Article and Find Full Text PDF

Identification of genetic alterations through next-generation sequencing (NGS) can guide treatment decision-making by providing information on diagnosis, therapy selection, and prognostic stratification in patients with hematological malignancies. Although the utility of NGS-based genomic profiling assays was investigated in hematological malignancies, no assays sufficiently cover driver mutations, including recently discovered ones, as well as fusions and/or pathogenic germline variants. To address these issues, here we have devised an integrated DNA/RNA profiling assay to detect various types of somatic alterations and germline variants at once.

View Article and Find Full Text PDF

Somatic mutation of DNMT3A (DNA methyltransferase 3 alpha) is implicated in the development of a wide range of hematological disorders, including clonal hematopoiesis of indeterminate potential. To elucidate the functional roles of endogenous levels of a DNMT3A R882 mutant, we generated a novel Dnmt3a R878C conditional knock-in mouse model. In contrast to viable heterozygotes, mice homozygous for the Dnmt3a R878C mutation in the hematopoietic system were not viable (Dnmt3a R878C is homologous to human DNMT3A R882C).

View Article and Find Full Text PDF

Adult T-cell leukemia/lymphoma (ATL) is an aggressive neoplasm immunophenotypically resembling regulatory T cells, associated with human T-cell leukemia virus type-1. Here, we performed whole-genome sequencing (WGS) of 150 ATL cases to reveal the overarching landscape of genetic alterations in ATL. We discovered frequent (33%) loss-of-function alterations preferentially targeting the CIC long isoform, which were overlooked by previous exome-centric studies of various cancer types.

View Article and Find Full Text PDF

Unlabelled: Premalignant clonal expansion of human T-cell leukemia virus type-1 (HTLV-1)-infected cells occurs before viral carcinogenesis. Here we characterize premalignant cells and the multicellular ecosystem in HTLV-1 infection with and without adult T-cell leukemia/lymphoma (ATL) by genome sequencing and single-cell simultaneous transcriptome and T/B-cell receptor sequencing with surface protein analysis. We distinguish malignant phenotypes caused by HTLV-1 infection and leukemogenesis and dissect clonal evolution of malignant cells with different clinical behavior.

View Article and Find Full Text PDF

Neutrophils play an essential role in innate immune responses to bacterial and fungal infections, and loss of neutrophil function can increase the risk of acquiring lethal infections in clinical settings. Here, we show that engineered neutrophil-primed progenitors derived from human induced pluripotent stem cells can produce functional neutrophil-like cells at a clinically applicable scale that can act rapidly in vivo against lethal bacterial infections. Using 5 different mouse models, we systematically demonstrated that these neutrophil-like cells migrate to sites of inflammation and infection and increase survival against bacterial infection.

View Article and Find Full Text PDF

Evi1 is a transcription factor essential for the development as well as progression of acute myeloid leukemia (AML) and high Evi1 AML is associated with extremely poor clinical outcome. Since targeting metabolic vulnerability is the emerging therapeutic strategy of cancer, we herein investigated a novel therapeutic target of Evi1 by analyzing transcriptomic, epigenetic, and metabolomic profiling of mouse high Evi1 leukemia cells. We revealed that Evi1 overexpression and Evi1-driven leukemic transformation upregulate transcription of gluconeogenesis enzyme Fbp1 and other pentose phosphate enzymes with interaction between Evi1 and the enhancer region of these genes.

View Article and Find Full Text PDF

Primary refractory acute myeloid leukemia (AML) is unresponsive to conventional chemotherapy and has a poor prognosis. Despite the recent identification of novel driver mutations and advances in the understanding of the molecular pathogenesis, little is known about the relationship between genetic abnormalities and chemoresistance in AML. In this study, we subjected 39 samples from patients with primary refractory AML to whole-exome and targeted sequencing analyses to identify somatic mutations contributing to chemoresistance in AML.

View Article and Find Full Text PDF

Recent studies of the cancer genome have identified numerous patients harboring multiple mutations (MM) within individual oncogenes. These MM (de novo MM) in cis synergistically activate the mutated oncogene and promote tumorigenesis, indicating a positive epistatic interaction between mutations. The relatively frequent de novo MM suggest that intramolecular positive epistasis is widespread in oncogenes.

View Article and Find Full Text PDF

Adult T-cell leukemia/lymphoma (ATL) is an aggressive peripheral T-cell malignancy with a markedly poor prognosis. The low prevalence of ATL among human T-cell leukemia virus type-1 (HTLV-1) carriers and the long latency period before ATL onset suggest that additional genetic lesions are required for ATL leukemogenesis. Recently, a large-scale genetic analysis clarified the entire picture of genetic alterations, identified a number of novel driver genes, and delineated their characteristics.

View Article and Find Full Text PDF

Sporadic reports have described cancer cases in which multiple driver mutations (MMs) occur in the same oncogene. However, the overall landscape and relevance of MMs remain elusive. Here we carried out a pan-cancer analysis of 60,954 cancer samples, and identified 14 pan-cancer and 6 cancer-type-specific oncogenes in which MMs occur more frequently than expected: 9% of samples with at least one mutation in these genes harboured MMs.

View Article and Find Full Text PDF

Although several pedigrees of familial myelodysplastic syndromes/acute myeloid leukemia (fMDS/AML) have been reported, the epidemiology and clinical features has been poorly understood. To explore the epidemiology of this entity, we performed a retrospective nationwide epidemiological survey in Japan using questionnaire sheets. The questionnaire was sent to 561 institutions or hospitals certified by Japanese Society of Hematology, unearthing the existence of 41 pedigrees of fMDS/AML.

View Article and Find Full Text PDF

Background: The occurrence of a mediastinal germ cell tumor (GCT) and hematological malignancy in the same patient is very rare. Due to its rarity, there have been only two reports of the concurrent cases undergoing detailed genetic analysis with whole-exome sequencing (WES), and the possible clonal relationship between the both tumors remained not fully elucidated.

Methods: We performed whole-exome sequencing analysis of mediastinal GCT and acute myeloid leukemia (AML) samples obtained from one young Japanese male adult patient with concurrent both tumors, and investigated the possible clonal relationship between them.

View Article and Find Full Text PDF

Although several causal genes of familial myelodysplastic syndromes (MDS) have been identified, the genetic landscape and the molecular pathogenesis are not totally understood. To explore novel driver genes and their pathogenetic significance, we performed whole-exome sequence analysis of four individuals from a familial MDS pedigree and 10 candidate single-nucleotide variants (C9orf43, CYP7B1, EFHB, ENTPD7, FAM160B2, HELZ2, HLTF, INPP5J, ITPKB, and RYK) were identified. Knockdown screening revealed that Hltf downregulation enhanced colony-forming capacity of primary murine bone marrow (BM) stem/progenitor cells.

View Article and Find Full Text PDF

Background: Atypical Myeloproliferative Neoplasms (aMPN) share characteristics of MPN and Myelodysplastic Syndromes. Although abnormalities in cytokine signaling are common in MPN, the pathophysiology of atypical MPN still remains elusive. Since deregulation of microRNAs is involved in the biology of various cancers, we studied the miRNome of aMPN patients.

View Article and Find Full Text PDF

Objective The therapeutic approach for transfusion-independent non-severe aplastic anemia (NSAA) is undetermined. This study aimed to investigate the efficacy of immunosuppressive therapy (IST) for NSAA. Methods We retrospectively reviewed 42 consecutive patients with transfusion-independent NSAA.

View Article and Find Full Text PDF