Selecting a set of initial users from a social network in order to maximize the envisaged number of influenced users is known as influence maximization (IM). Researchers have achieved significant advancements in the theoretical design and performance gain of several classical approaches, but these advances are almost reaching their pinnacle. Learning-based IM approaches have emerged recently with a higher generalization to unknown graphs than conventional methods.
View Article and Find Full Text PDFIn recent years, analyzing the explanation for the prediction of Graph Neural Networks (GNNs) has attracted increasing attention. Despite this progress, most existing methods do not adequately consider the inherent uncertainties stemming from the randomness of model parameters and graph data, which may lead to overconfidence and misguiding explanations. However, it is challenging for most of GNN explanation methods to quantify these uncertainties since they obtain the prediction explanation in a and model-agnostic manner without considering the randomness of and .
View Article and Find Full Text PDF