Publications by authors named "Junius Clarke"

A series of bezimidazole-isatin oximes were prepared and profiled as inhibitors of respiratory syncytial virus (RSV) replication in cell culture. Structure-activity relationship studies were directed toward optimization of antiviral activity, cell permeability and metabolic stability in human liver micorosomes (HLM). Parallel combinatorial synthetic chemistry was employed to functionalize isatin oximes via O-alkylation which quickly identified a subset of small, lipophilic substituents that established good potency for the series.

View Article and Find Full Text PDF

The effect of structural variation of the benzimidazol-2-one ring of RSV fusion inhibitors related to BMS-433771 (1) was examined in conjunction with side chain modifications and the introduction of an aminomethyl substituent at the 5-position of the core benzimidazole moiety. Replacement of the benzimidazol-2-one moiety with benzoxazole, oxindole, quinoline-2-one, quinazolin-2,4-dione and benzothiazine derivatives provided a series of potent RSV fusion inhibitors 4. However, the intrinsic potency of 6,6-fused ring systems was generally less than that of comparably substituted 5,6-fused heterocycles of the type found in BMS-433771 (1).

View Article and Find Full Text PDF

A series of benzimidazole-based inhibitors of respiratory syncytial virus (RSV) fusion were optimized for antiviral potency, membrane permeability and metabolic stability in human liver microsomes. 1-Cyclopropyl-1,3-dihydro-3-[[1-(4-hydroxybutyl)-1H-benzimidazol-2-yl]methyl]-2H-imidazo[4,5-c]pyridin-2-one (6m, BMS-433771) was identified as a potent RSV inhibitor demonstrating good bioavailability in the mouse, rat, dog and cynomolgus monkey that demonstrated antiviral activity in the BALB/c and cotton rat models of infection following oral administration.

View Article and Find Full Text PDF

The introduction of acidic and basic functionality into the side chains of respiratory syncytial virus (RSV) fusion inhibitors was examined in an effort to identify compounds suitable for evaluation in vivo in the cotton rat model of RSV infection following administration as a small particle aerosol. The acidic compounds 2r, 2u, 2v, 2w, 2z, and 2aj demonstrated potent antiviral activity in cell culture and exhibited efficacy in the cotton rat comparable to ribavirin. In a BALB/c mouse model, the oxadiazolone 2aj reduced virus titers following subcutaneous dosing, whilst the ester 2az and amide 2aab exhibited efficacy following oral administration.

View Article and Find Full Text PDF

In an era of increasing resistance to classical antibacterial agents, the synthetic oxazolidinone series of antibiotics has attracted much interest. Zyvoxtrade mark was the first oxazolidinone to be approved for clinical use against infections caused by multi-drug resistant Gram-positive bacteria. In the course of studies directed toward the discovery of novel antibacterial agents, a new series of synthetic phenyl-isoxazolinone agents that displayed potent activity against Gram-positive bacterial strains was recently discovered at Bristol-Myers Squibb.

View Article and Find Full Text PDF