Publications by authors named "Junichiro Futami"

Article Synopsis
  • The first-generation vector pCMViR-TSC shows significantly higher gene expression (10- to 100-fold) compared to standard plasmids but is limited to transient gene expression in mammalian cells.
  • To address this limitation, a new second-generation vector, pSAKA-4B, is introduced, enabling stable integration of genes into mammalian DNA with high efficiency.
  • This improved vector system allows for indefinite gene expression, making it valuable for basic research and potential clinical applications like gene therapy.
View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) cells are a highly formidable cancer to treat. Nonetheless, by continued investigation into the molecular biology underlying the complex regulation of TNBC cell activity, vulnerabilities can be exposed as potential therapeutic targets at the molecular level. We previously revealed that lysyl oxidase-like 4 (LOXL4) promotes the invasiveness of TNBC cells via cell surface annexin A2 as a novel binding substrate of LOXL4, which promotes the abundant localization of integrin-β1 at the cancer plasma membrane.

View Article and Find Full Text PDF

Background: Our earlier research revealed that the secreted lysyl oxidase-like 4 (LOXL4) that is highly elevated in triple-negative breast cancer (TNBC) acts as a catalyst to lock annexin A2 on the cell membrane surface, which accelerates invasive outgrowth of the cancer through the binding of integrin-β1 on the cell surface. However, whether this machinery is subject to the LOXL4-mediated intrusive regulation remains uncertain.

Methods: Cell invasion was assessed using a transwell-based assay, protein-protein interactions by an immunoprecipitation-Western blotting technique and immunocytochemistry, and plasmin activity in the cell membrane by gelatin zymography.

View Article and Find Full Text PDF

Serum autoantibody profiles are unique to individuals and reflect the level and history of autoimmunity and tumor immunity. The identification of autoantibody biomarkers is critical for the development of immune monitoring systems for immune-related disorders. Here, we present a practical method for large-scale autoantibody discovery using total cellular proteins from cultured mammalian cells.

View Article and Find Full Text PDF

The adenovirus-REIC/Dkk-3 expression vector (Ad-REIC) has been the focus of numerous clinical studies due to its potential for the quenching of cancers. The cancer-suppressing mechanisms of the REIC/DKK-3 gene depend on multiple pathways that exert both direct and indirect effects on cancers. The direct effect is triggered by REIC/Dkk-3-mediated ER stress that causes cancer-selective apoptosis, and the indirect effect can be classified in two ways: (i) induction, by Ad-REIC-mis-infected cancer-associated fibroblasts, of the production of IL-7, an important activator of T cells and NK cells, and (ii) promotion, by the secretory REIC/Dkk-3 protein, of dendritic cell polarization from monocytes.

View Article and Find Full Text PDF

Bladder cancer is an often widely disseminated and deadly cancer. To block the malignant outgrowth of bladder cancer, we must elucidate the molecular-level characteristics of not only bladder cancer cells but also their surrounding milieu. As part of this effort, we have long been studying extracellular S100A8/A9, which is elevated by the inflammation associated with certain cancers.

View Article and Find Full Text PDF

Secondary lymphoid tissues, such as the spleen and lymph nodes (LNs), contribute to breast cancer development and metastasis in both anti- and pro-tumoral directions. Although secondary lymphoid tissues have been extensively studied, very little is known about the immune conversion in mesenteric LNs (mLNs) during breast cancer development. Here, we demonstrate inflammatory immune conversion of mLNs in a metastatic 4T1 breast cancer model.

View Article and Find Full Text PDF

The dissection of the complex multistep process of metastasis exposes vulnerabilities that could be exploited to prevent metastasis. To search for possible factors that favor metastatic outgrowth, we have been focusing on secretory S100A8/A9. A heterodimer complex of the S100A8 and S100A9 proteins, S100A8/A9 functions as a strong chemoattractant, growth factor, and immune suppressor, both promoting the cancer milieu at the cancer-onset site and cultivating remote, premetastatic cancer sites.

View Article and Find Full Text PDF

Follicular dendritic cells (FDCs) play a crucial role in generating high-affinity antibody-producing B cells during the germinal center (GC) reaction. Herein, we analysed the altered gene expression profile of a mouse FDC line, FL-Y, following lymphotoxin β receptor stimulation, and observed increased Slam-family member 8 (Slamf8) mRNA expression. Forced Slamf8 expression and SLAMF8-Fc addition enhanced the ability of FL-Y cells to induce FDC-induced monocytic cell (FDMC) differentiation.

View Article and Find Full Text PDF

Serum autoantibody to cancer/testis antigens (CTAs) is a critical biomarker that reflects the antitumor immune response. Quantitative and multiplexed anti-CTA detection arrays can assess the immune status in tumors and monitor therapy-induced antitumor immune reactions. Most full-length recombinant CTA proteins tend to aggregate.

View Article and Find Full Text PDF

The role of (), a Wnt-signaling inhibitor, in male reproductive physiology remains unknown thus far. To explore the functional details of in the male reproductive process, we studied the knock-out (KO) mouse model. By examining testicular sections and investigating the sperm characteristics (count, vitality and motility) and ultrastructure, we compared the reproductive features between -KO and wild-type (WT) male mice.

View Article and Find Full Text PDF

To develop combination immunotherapies for gastric cancers, immunologically well-characterized preclinical models are crucial. Here, we leveraged two transplantable murine gastric cancer cell lines, YTN2 and YTN16, derived from the same parental line but differing in their susceptibility to immune rejection. We established their differential sensitivity to immune checkpoint inhibitors (ICI) and identified neoantigens.

View Article and Find Full Text PDF

Transient expression of human intracellular proteins in human embryonic kidney (HEK) 293 cells is a reliable system for obtaining soluble proteins with biologically active conformations. Contrary to conventional concepts, we found that recombinantly expressed intracellular cancer-testis antigens (CTAs) showed frequent aggregation in HEK293 cells. Although experimental subcellular localization of recombinant CTAs displayed proper cytosolic or nuclear localization, some proteins showed aggregated particles in the cell.

View Article and Find Full Text PDF

Optimized conditions are needed to refold recombinant proteins from bacterial inclusion bodies into their biologically active conformations. In this study, we found two crucial requirements for efficient refolding of cationic tetrameric chicken avidin. The first step is to eliminate nucleic acid contaminants from the bacterial inclusion body.

View Article and Find Full Text PDF

Introduction: Programmed cell death-1 (PD-1) inhibitors effectively treat NSCLC and prolong survival. Robust biomarkers for predicting clinical benefits of good response and long survival with anti-PD-1 therapy have yet to be identified; therefore, predictive biomarkers are needed to select patients with benefits.

Methods: We conducted a prospective study to explore whether serum antibody against NY-ESO-1 and/or XAGE1 cancer-testis antigens predicted primarily good clinical response and secondarily long survival with anti-PD-1 therapy for NSCLC.

View Article and Find Full Text PDF

Metastatic breast cancer is the leading cause of cancer-associated death in women. The progression of this fatal disease is associated with inflammatory responses that promote cancer cell growth and dissemination, eventually leading to a reduction of overall survival. However, the mechanism(s) of the inflammation-boosted cancer progression remains unclear.

View Article and Find Full Text PDF

S100A11, a member of the S100 family of proteins, is actively secreted from pancreatic ductal adenocarcinoma (PDAC) cells. However, the role of the extracellular S100A11 in PDAC progression remains unclear. In the present study, we investigated the extracellular role of S100A11 in crosstalking between PDAC cells and surrounding fibroblasts in PDAC progression.

View Article and Find Full Text PDF

Since metastasis accounts for the majority of cancer-associated deaths, studies on the mechanisms of metastasis are needed to establish innovative strategies for cancer treatment. We previously reported that melanoma cell adhesion molecule (MCAM) functions as a critical receptor for S100A8/A9, and binding of S100A8/A9 to MCAM results in the migration of melanoma cells to lung tissue. However, the critical role of MCAM in the original melanoma skin lesion is still not clear.

View Article and Find Full Text PDF

The fertile stroma in pancreatic ductal adenocarcinomas (PDACs) has been suspected to greatly contribute to PDAC progression. Since the main cell constituents of the stroma are fibroblasts, there is crosstalking(s) between PDAC cells and surrounding fibroblasts in the stroma, which induces a fibroblast proliferation burst. We have reported that several malignant cancer cells including PDAC cells secrete a pronounced level of S100A11, which in turn stimulates proliferation of cancer cells via the receptor for advanced glycation end products (RAGE) in an autocrine manner.

View Article and Find Full Text PDF

Compiling evidence indicates an unusual role of extracellular S100A8/A9 in cancer metastasis. S100A8/A9 secreted from either cancer cells or normal cells including epithelial and inflammatory cells stimulates cancer cells through S100A8/A9 sensor receptors in an autocrine or paracrine manner, leading to cancer cell metastatic progression. We previously reported a novel S100A8/A9 receptor, neuroplastin-β (NPTNβ), which plays a critical role in atopic dermatitis when it is highly activated in keratinocytes by an excess amount of extracellular S100A8/A9 in the inflammatory skin lesion.

View Article and Find Full Text PDF

The metastatic dissemination of cancer cells to remote areas of the body is the most problematic aspect in cancer patients. Among cancers, melanomas are notoriously difficult to treat due to their significantly high metastatic potential even during early stages. Hence, the establishment of advanced therapeutic approaches to regulate metastasis is required to overcome the melanoma disease.

View Article and Find Full Text PDF

Within the "seed and soil" theory of organ tropic cancer metastasis is a growing compilation of evidence that S100A8/A9 functions as a soil signal that attracts cancer cells to certain organs, which prove beneficial to their growth. S100A8/A9-sensing receptors including Toll-like receptor 4 (TLR4), advanced glycation end products (RAGE), and also important receptors we recently succeeded in identifying (EMMPRIN, NPTNβ, MCAM, and ALCAM) have the potential to become promising therapeutic targets. In our study, we prepared extracellular regions of these novel molecules and fused them to human IgG2-Fc to extend half-life expectancy, and we evaluated the anti-metastatic effects of the purified decoy proteins on metastatic cancer cells.

View Article and Find Full Text PDF

Current ageing theories are far from satisfactory because of the many determinants involved in ageing. The well-known rate-of-living theory assumes that the product (lifetime energy expenditure, LEE) of maximum lifespan (MLS) and mass-specific basal metabolic rate (msBMR) is approximately constant. Although this theory provides a significant inverse correlation between msBMR and MLS as a whole for mammals, it remains problematic for two reasons.

View Article and Find Full Text PDF

Many extracellular globular proteins have evolved to possess disulphide bonds in their native conformations, which aids in thermodynamic stabilisation. However, disulphide bond breakage by heating leads to irreversible protein denaturation through disulphide-thiol exchange reactions. In this study, we demonstrate that methanethiosulphonate (MTS) specifically suppresses the heat-induced disulphide-thiol exchange reaction, thus improving the heat-resistance of proteins.

View Article and Find Full Text PDF

We previously identified novel S100A8/A9 receptors, extracellular matrix metalloproteinase inducer (EMMPRIN), melanoma cell adhesion molecule (MCAM), activated leukocyte cell adhesion molecule (ALCAM), and neuroplastin (NPTN) β, that are critically involved in S100A8/A9-mediated cancer metastasis and inflammation when expressed at high levels. However, little is known about the presence of any cancer-specific mechanism(s) that modifies these receptors, further inducing upregulation at protein levels without any transcriptional regulation. Expression levels of glycosyltransferase-encoding genes were examined by a PCR-based profiling array followed by confirmation with quantitative real-time PCR.

View Article and Find Full Text PDF