Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer.
View Article and Find Full Text PDFAim: We identified chemical components that exhibited antitumor activity against oral squamous cell carcinoma (OSCC) cells and examined their effective concentrations and additive and/or synergistic effects in combinational usage on the proliferation, apoptosis and cell cycle of OSCC cells.
Materials And Methods: Using high-performance liquid chromatography, nuclear magnetic resonance spectroscopy and electrospray ionization-mass spectrometry, we identified the main chemical components of the methanol extracts from Paeonia lutea. We investigated the pharmaceutical effects of those components on the proliferation, apoptosis, and cell cycle of an OSCC cell line, SAS, using the tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and caspase assays, as well as flow cytometry cell cycle analysis.
Hypoxia occurs under important clinical conditions such as cancers, heart disease, and ischemia. However, the relationship between hypoxia and autophagy in osteocytes is still unclear. The objective of the present study was to uncover the regulatory mechanisms that prevent regulated cell death, such as apoptosis, necrosis, and autophagy, under hypoxia.
View Article and Find Full Text PDFBackground: Tumor protein D52 (TPD52) reportedly plays an important role in the proliferation and metastasis of various cancer cells, including oral squamous cell carcinoma (OSCC) cells, and is expressed strongly at the center of the tumor, where the microenvironment is hypoxic. Thus, the present study investigated the roles of TPD52 in the survival and death of OSCC cells under hypoxia, and the relationship with hypoxia-inducible factor (HIF). We examined the expression of TPD52 in OSCC cells under hypoxic conditions and analyzed the effects of HIF on the modulation of TPD52 expression.
View Article and Find Full Text PDFCisplatin (cis-diamminedichloroplatinum II [CDDP] ) is a well-known chemotherapeutic drug that has been used for the treatment of various types of human cancers, including head and neck cancer. Cisplatin exerts anticancer effects by causing DNA damage, replication defects, transcriptional inhibition, cell cycle arrest, and the induction of apoptosis. However, drug resistance is one of the most serious problems with cancer chemotherapy, and it causes expected therapeutic effects to not always be achieved.
View Article and Find Full Text PDF