Publications by authors named "Junichi Watahiki"

The fusion of orthodontic treatment and periodontal tissue-regeneration therapy has attracted attention. However, regenerated bone has a higher density than physiologic bone, which may cause problems including root resorption or stagnation of orthodontic movement. Therefore, the optimized periodontal regeneration for orthodontic movement (O-PRO) approach was developed with the aim of regenerating periodontal tissues with sparse bone quality.

View Article and Find Full Text PDF

In embryos, neural crest cells emerge from the dorsal region of the fusing neural tube and migrate throughout tissues to differentiate into various types of cells including osteoblasts. In adults, subsets of neural crest-derived cells (NCDCs) reside as stem cells and are considered to be useful cell sources for regenerative medicine strategies. Numerous studies have suggested that stem cells with a neural crest origin persist into adulthood, especially those within the mammalian craniofacial compartment.

View Article and Find Full Text PDF

Introduction: Mandibular growth is believed to be strongly related to mastication. Furthermore, mandibular condylar cartilage is known to be derived from neural crest cells. We examined whether the degree of chewing affects condylar cartilage growth of the mandible.

View Article and Find Full Text PDF

Background: In the clinical field of jawbone formation, the use of autogenous bone as the graft material is the gold standard. However, there are some problems with this technique, such as risk of infection on the donor side, the limited amount of available bone mass, and marked resorption of the grafted bone. We investigated the potential for using teeth as a bone graft material for jawbone formation because the dental pulp contains stem cells, including undifferentiated neural crest-derived cells.

View Article and Find Full Text PDF

It is well known that mastication has a significant influence on mandibular growth and development, but the mechanism behind this effect has not yet been clarified. Furthermore, no studies have examined the effects of changes in mastication on the three-dimensional (3D) morphometry of the mandible. The aim of the present study was to investigate the influences of changes in mastication on mandibular growth and morphology.

View Article and Find Full Text PDF

Mandibular condylar cartilage can be distinguished from articular and growth cartilages of long bones based on several differences in morphology, physiology, and function between these structures. However, there is almost no information available on the types of genes that contribute to these differences. In this study, genes that were differentially expressed in mandibular condylar and growth cartilages in 1-week-old rats were investigated using fluorescent differential display (FDD) and laser microdissection (LMD).

View Article and Find Full Text PDF