BMC Med Inform Decis Mak
December 2019
Background: Clinical Named Entity Recognition is to find the name of diseases, body parts and other related terms from the given text. Because Chinese language is quite different with English language, the machine cannot simply get the graphical and phonetic information form Chinese characters. The method for Chinese should be different from that for English.
View Article and Find Full Text PDF*: Background Consisting of dictated free-text documents such as discharge summaries, medical narratives are widely used in medical natural language processing. Relationships between anatomical entities and human body parts are crucial for building medical text mining applications. To achieve this, we establish a mapping system consisting of a Wikipedia-based scoring algorithm and a named entity normalization method (NEN).
View Article and Find Full Text PDFPharmacovigilance (PV) databases record the benefits and risks of different drugs, as a means to ensure their safe and effective use. Creating and maintaining such resources can be complex, since a particular medication may have divergent effects in different individuals, due to specific patient characteristics and/or interactions with other drugs being administered. Textual information from various sources can provide important evidence to curators of PV databases about the usage and effects of drug targets in different medical subjects.
View Article and Find Full Text PDFBackground: Since their introduction in 2009, the BioNLP Shared Task events have been instrumental in advancing the development of methods and resources for the automatic extraction of information from the biomedical literature. In this paper, we present the Cancer Genetics (CG) and Pathway Curation (PC) tasks, two event extraction tasks introduced in the BioNLP Shared Task 2013. The CG task focuses on cancer, emphasizing the extraction of physiological and pathological processes at various levels of biological organization, and the PC task targets reactions relevant to the development of biomolecular pathway models, defining its extraction targets on the basis of established pathway representations and ontologies.
View Article and Find Full Text PDFBackground: Electronic medical record (EMR) systems have become widely used throughout the world to improve the quality of healthcare and the efficiency of hospital services. A bilingual medical lexicon of Chinese and English is needed to meet the demand for the multi-lingual and multi-national treatment. We make efforts to extract a bilingual lexicon from English and Chinese discharge summaries with a small seed lexicon.
View Article and Find Full Text PDFReferences to anatomical entities in medical records consist not only of explicit references to anatomical locations, but also other diverse types of expressions, such as specific diseases, clinical tests, clinical treatments, which constitute implicit references to anatomical entities. In order to identify these implicit anatomical entities, we propose a hierarchical framework, in which two layers of named entity recognizers (NERs) work in a cooperative manner. Each of the NERs is implemented using the Conditional Random Fields (CRF) model, which use a range of external resources to generate features.
View Article and Find Full Text PDFBackground: Semantic Category Disambiguation (SCD) is the task of assigning the appropriate semantic category to given spans of text from a fixed set of candidate categories, for example Protein to "Fibrin". SCD is relevant to Natural Language Processing tasks such as Named Entity Recognition, coreference resolution and coordination resolution. In this work, we study machine learning-based SCD methods using large lexical resources and approximate string matching, aiming to generalise these methods with regard to domains, lexical resources and the composition of data sets.
View Article and Find Full Text PDFJ Am Med Inform Assoc
February 2014
Objective: In this paper, we focus on three aspects: (1) to annotate a set of standard corpus in Chinese discharge summaries; (2) to perform word segmentation and named entity recognition in the above corpus; (3) to build a joint model that performs word segmentation and named entity recognition.
Design: Two independent systems of word segmentation and named entity recognition were built based on conditional random field models. In the field of natural language processing, while most approaches use a single model to predict outputs, many works have proved that performance of many tasks can be improved by exploiting combined techniques.
To build large collections of medical terms from semi-structured information sources (e.g. tables, lists, etc.
View Article and Find Full Text PDFJ Am Med Inform Assoc
December 2013
Objective: To create an end-to-end system to identify temporal relation in discharge summaries for the 2012 i2b2 challenge. The challenge includes event extraction, timex extraction, and temporal relation identification.
Design: An end-to-end temporal relation system was developed.
IEEE Trans Pattern Anal Mach Intell
November 2012
This paper is about supervised and semi-supervised dimensionality reduction (DR) by generating spectral embeddings from multi-output data based on the pairwise proximity information. Two flexible and generic frameworks are proposed to achieve supervised DR (SDR) for multilabel classification. One is able to extend any existing single-label SDR to multilabel via sample duplication, referred to as MESD.
View Article and Find Full Text PDFBMC Bioinformatics
November 2012
Background: Current research has shown that major difficulties in event extraction for the biomedical domain are traceable to coreference. Therefore, coreference resolution is believed to be useful for improving event extraction. To address coreference resolution in molecular biology literature, the Protein Coreference (COREF) task was arranged in the BioNLP Shared Task (BioNLP-ST, hereafter) 2011, as a supporting task.
View Article and Find Full Text PDFMotivation: Event extraction using expressive structured representations has been a significant focus of recent efforts in biomedical information extraction. However, event extraction resources and methods have so far focused almost exclusively on molecular-level entities and processes, limiting their applicability.
Results: We extend the event extraction approach to biomedical information extraction to encompass all levels of biological organization from the molecular to the whole organism.
We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task on Entity Relations (REL). The two main tasks represent extensions of the event extraction model introduced in the BioNLP Shared Task 2009 (ST'09) to two new areas of biomedical scientific literature, each motivated by the needs of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance, focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria.
View Article and Find Full Text PDFBackground: The Genia task, when it was introduced in 2009, was the first community-wide effort to address a fine-grained, structural information extraction from biomedical literature. Arranged for the second time as one of the main tasks of BioNLP Shared Task 2011, it aimed to measure the progress of the community since 2009, and to evaluate generalization of the technology to full text papers. The Protein Coreference task was arranged as one of the supporting tasks, motivated from one of the lessons of the 2009 task that the abundance of coreference structures in natural language text hinders further improvement with the Genia task.
View Article and Find Full Text PDFJ Am Med Inform Assoc
January 2013
Objective: To develop a system to extract follow-up information from radiology reports. The method may be used as a component in a system which automatically generates follow-up information in a timely fashion.
Methods: A novel method of combining an LSP (labeled sequential pattern) classifier with a CRF (conditional random field) recognizer was devised.
Objective: A system that translates narrative text in the medical domain into structured representation is in great demand. The system performs three sub-tasks: concept extraction, assertion classification, and relation identification.
Design: The overall system consists of five steps: (1) pre-processing sentences, (2) marking noun phrases (NPs) and adjective phrases (APs), (3) extracting concepts that use a dosage-unit dictionary to dynamically switch two models based on Conditional Random Fields (CRF), (4) classifying assertions based on voting of five classifiers, and (5) identifying relations using normalized sentences with a set of effective discriminating features.
J Am Med Inform Assoc
January 2013
Objective: To create a highly accurate coreference system in discharge summaries for the 2011 i2b2 challenge. The coreference categories include Person, Problem, Treatment, and Test.
Design: An integrated coreference resolution system was developed by exploiting Person attributes, contextual semantic clues, and world knowledge.
Background: Bio-molecular event extraction from literature is recognized as an important task of bio text mining and, as such, many relevant systems have been developed and made available during the last decade. While such systems provide useful services individually, there is a need for a meta-service to enable comparison and ensemble of such services, offering optimal solutions for various purposes.
Results: We have integrated nine event extraction systems in the U-Compare framework, making them intercompatible and interoperable with other U-Compare components.
Background: We consider the task of automatically extracting DNA methylation events from the biomedical domain literature. DNA methylation is a key mechanism of epigenetic control of gene expression and implicated in many cancers, but there has been little study of automatic information extraction for DNA methylation.
Results: We present an annotation scheme for DNA methylation following the representation of the BioNLP shared task on event extraction, select a set of 200 abstracts including a representative sample of all PubMed citations relevant to DNA methylation, and introduce manual annotation for this corpus marking nearly 3000 gene/protein mentions and 1500 DNA methylation and demethylation events.
Background: Event extraction following the GENIA Event corpus and BioNLP shared task models has been a considerable focus of recent work in biomedical information extraction. This work includes efforts applying event extraction methods to the entire PubMed literature database, far beyond the narrow subdomains of biomedicine for which annotated resources for extraction method development are available.
Results: In the present study, our aim is to estimate the coverage of all statements of gene/protein associations in PubMed that existing resources for event extraction can provide.
Motivation: Understanding key biological processes (bioprocesses) and their relationships with constituent biological entities and pharmaceutical agents is crucial for drug design and discovery. One way to harvest such information is searching the literature. However, bioprocesses are difficult to capture because they may occur in text in a variety of textual expressions.
View Article and Find Full Text PDFText mining methods have added considerably to our capacity to extract biological knowledge from the literature. Recently the field of systems biology has begun to model and simulate metabolic networks, requiring knowledge of the set of molecules involved. While genomics and proteomics technologies are able to supply the macromolecular parts list, the metabolites are less easily assembled.
View Article and Find Full Text PDFMotivation: Discovering useful associations between biomedical concepts has been one of the main goals in biomedical text-mining, and understanding their biomedical contexts is crucial in the discovery process. Hence, we need a text-mining system that helps users explore various types of (possibly hidden) associations in an easy and comprehensible manner.
Results: This article describes FACTA+, a real-time text-mining system for finding and visualizing indirect associations between biomedical concepts from MEDLINE abstracts.