Publications by authors named "Junichi Satoh"

TREM2 is an innate immune receptor expressed by microglia in the adult brain. Genetic variation in the TREM2 gene has been implicated in risk for Alzheimer's disease and frontotemporal dementia, while homozygous TREM2 mutations cause a rare leukodystrophy, Nasu-Hakola disease (NHD). Despite extensive investigation, the role of TREM2 in NHD pathogenesis remains poorly understood.

View Article and Find Full Text PDF

To develop drugs to treat Alzheimer's disease (AD) on the basis of the amyloid cascade hypothesis, the amyloid-β (Aβ) aggregation inhibitory activities of 110 extracts from mushrooms were evaluated by thioflavin T (Th-T) assays. The MeOH extract of inhibited Aβ aggregation, and the bioactivity-guided fractionation of the extract afforded four novel meroterpenoids, named scutigeric acid (), albatrelactone methyl ester (), albatrelactone (), and 10',11'-dihydroxygrifolic acid (), together with two known compounds, grifolin () and grifolic acid (). The structures of - were elucidated using NMR, MS, UV, IR, and induced ECD spectral data.

View Article and Find Full Text PDF

By combining genomic data and brain imaging data, a recent study has identified a novel gene named that participates in the formation of amyloid-β (Aβ) plaques and brain atrophy in Alzheimer's disease (AD). encodes a 47-kDa protein designated Aggregatin that accumulates in the center of amyloid plaques and physically interacts with Aβ to facilitate Aβ aggregation. Aggregatin is expressed predominantly in the central nervous system (CNS) and its levels are increased in brains of the patients with AD and in mouse models of AD.

View Article and Find Full Text PDF

The R47H variant in the microglial triggering receptor expressed on myeloid cell 2 (TREM2) receptor is a strong risk factor for Alzheimer's disease (AD). To characterize processes affected by R47H, we performed an integrative network analysis of genes expressed in brains of AD patients with R47H, sporadic AD without the variant, and patients with polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), systemic disease with early-onset dementia caused by loss-of-function mutations in TREM2 or its adaptor TYRO protein tyrosine kinase-binding protein (TYROBP). Although sporadic AD had few perturbed microglial and immune genes, TREM2 R47H AD demonstrated upregulation of interferon type I response and pro-inflammatory cytokines accompanied by induction of NKG2D stress ligands.

View Article and Find Full Text PDF

Genetic variations of TREM2 have been implicated as a risk factor of Alzheimer's disease (AD). Recent studies suggest that the loss of TREM2 function compromises microglial responses to the accumulation of amyloid beta. Previously, we found that exon 3 of TREM2 is an alternative exon whose skipping leads to a reduction in full-length TREM2 protein by inducing nonsense-mediated mRNA decay.

View Article and Find Full Text PDF

We previously identified an evolutionarily conserved protein named transmembrane protein 119 (TMEM119) as the most reliable maker for human microglia. Recent studies showed that under homeostatic conditions, microglia intensely express TMEM119, whereas the expression levels are greatly reduced in disease-associated microglia (DAM) activated at the site of neurodegeneration. Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder, pathologically characterized by leukoencephalopathy, astrogliosis, axonal spheroids, and accumulation of microglia.

View Article and Find Full Text PDF

Ferredoxin NADP oxidoreductase (Fpr) and oxygen-insensitive NAD(P)H nitroreductase (NfnB) are purified from Escherichia coli JM109 (E. coli JM109) as a predominant free flavin-independent ferric reductase. In the present study, we prepared natural iron storage proteins, E.

View Article and Find Full Text PDF

BACE1 inhibitory activity-guided fractionation of an extract of the fruiting body of yielded five novel meroterpenoids (-) and one known compound (; asiaticusin A). The structures of these compounds were determined by interpretation of NMR, MS, and IR spectral data. The five new compounds contain 4-hydroxybenzoic acid and geranylgeranoic acid units.

View Article and Find Full Text PDF

Glycoprotein non-metastatic melanoma protein B (GPNMB) is a type I transmembrane glycoprotein first identified in low-metastatic human melanoma cell lines as a regulator of tumor growth. GPNMB is widely expressed in various tissues, where it is involved in cell differentiation, migration, inflammation/anti-inflammation, tissue regeneration, and neuroprotection. GPNMB is identified in microglia of adult rat brains, neurons and astrocytes of GPNMB transgenic (Tg) mouse brains, and motor neurons of amyotrophic lateral sclerosis (ALS) patients.

View Article and Find Full Text PDF

Gamma-interferon-inducible lysosomal thiol reductase (GILT), expressed in antigen-presenting cells (APCs), facilitates the reduction of disulfide bonds of endocytosed proteins in the endocytic pathway and they are further processed for presentation of immunogenic peptides loaded on major histocompatibility complex (MHC) class II. Although the constitutive and IFNγ-inducible expression of GILT was observed in various APCs, such as dendritic cells, monocytes/macrophages, and B cells, GILT-expressing cell types remain unknown in the human central nervous system (CNS). Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder characterized by sclerosing leukoencephalopathy and multifocal bone cysts, caused by a loss-of-function mutation of either () or , both of which are expressed on microglia.

View Article and Find Full Text PDF

is a recently identified bacterium which grows well under both aerobic and anaerobic conditions and may prove useful for biomass utilization. despite lacking a respiratory chain, consumes oxygen at a similar rate to (130-140 μmol oxygen·min·g dry cells at 37 °C), suggesting that it has an alternative system that uses a large amount of oxygen. NADH oxidase (Nox) was previously reported to rapidly reduce molecular oxygen content in the presence of exogenously added free flavin.

View Article and Find Full Text PDF

MiRNA molecules are important post-transcriptional regulators of gene expression in the brain function. Altered miRNA profiles could represent a defensive response against the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD). Endogenous miRNAs have lower toxic effects than other gene silencing methods, thus enhancing the expression of defensive miRNA could be an effective therapy.

View Article and Find Full Text PDF

Loss-of-function mutations in TREM2 cause Nasu-Hakola disease (NHD), a rare genetic disease characterized by early-onset dementia with leukoencephalopathy and bone cysts. An NHD-associated mutation, c.482 + 2 T > C, disrupts the splice donor site of intron 3 and causes aberrant skipping of exon 3, resulting in the loss of full-length TREM2 protein.

View Article and Find Full Text PDF

Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder, characterized by progressive presenile dementia and formation of multifocal bone cysts, caused by genetic mutations of either triggering receptor expressed on myeloid cells 2 () or TYRO protein tyrosine kinase binding protein (), alternatively named DNAX-activation protein 12 (), both of which are expressed on microglia in the brain and form the receptor-adaptor complex that chiefly recognizes anionic lipids. TREM2 transmits the signals involved in microglial survival, proliferation, chemotaxis, and phagocytosis. A recent study indicated that a loss of TREM2 function causes greater amounts of amyloid-β (Aβ) deposition in the hippocampus of a mouse model of Alzheimer's disease (AD) owing to a dysfunctional response of microglia to amyloid plaques, suggesting that TREM2 facilitates Aβ clearance by microglia.

View Article and Find Full Text PDF

Nasu-Hakola disease (NHD) is a rare autosomal recessive leukoencephalopathy caused by a loss-of-function mutation of either () or expressed in microglia. A rare variant of the gene encoding p.Arg47His causes a 3-fold increase in the risk for late-onset Alzheimer's disease (LOAD).

View Article and Find Full Text PDF

A fixed-dose formula that combines Ombitasvir (OBV), Paritaprevir (PTV) and Ritonavir (RTV) has been launched into the field of anti-HCV therapy in Japan for patients infected with HCV genotypes 1 and 2 in 2015. However, little is yet known as to the efficacy and safety of this novel therapy in patients on maintenance haemodialysis (HD). The present report describes a preliminary experience in 10 patients (five males and five females) who underwent maintenance HD.

View Article and Find Full Text PDF

The G protein-coupled receptor 17 (GPR17), a Gi-coupled GPCR, acts as an intrinsic timer of oligodendrocyte differentiation and myelination. The expression of GPR17 is upregulated during differentiation of oligodendrocyte precursor cells (OPCs) into premyelinating oligodendrocytes (preoligodendrocytes), whereas it is markedly downregulated during terminal maturation of myelinating oligodendrocytes. Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder caused by a loss-of-function mutation of either () or .

View Article and Find Full Text PDF

Background: Mild cognitive impairment (MCI) is an intermediate state between normal aging and dementia including Alzheimer's disease. Early detection of dementia, and MCI, is a crucial issue in terms of secondary prevention. Blood biomarker detection is a possible way for early detection of MCI.

View Article and Find Full Text PDF

The superoxide-producing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex of phagocytes (phox) plays a key role in production of reactive oxygen species (ROS) by microglia. The catalytic subunits of the NADPH oxidase are composed of p22phox and gp91phox. Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder caused by a loss-of-function mutation of either () or .

View Article and Find Full Text PDF

Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder characterized by sclerosing leukoencephalopathy and multifocal bone cysts, caused by a loss-of-function mutation of either or . TREM2 and DAP12 constitute a receptor/adaptor signaling complex expressed exclusively on osteoclasts, dendritic cells, macrophages, and microglia. Premortem molecular diagnosis of NHD requires genetic analysis of both and , in which 20 distinct NHD-causing mutations have been reported.

View Article and Find Full Text PDF

Aim: Combination therapy with Daclatasvir (DCV) plus Asunaprevir (ASV) has been proven effective in patients with chronic hepatitis C virus (HCV) infection. However, little is known as to the effect of this therapy in patients with reduced renal function. Focusing on CKD patients whose renal function has declined, the present trial addresses the efficacy and safety of this combination therapy in CKD patients with reduced estimated glomerular filtration rate (eGFR).

View Article and Find Full Text PDF

The brains of 10 Japanese patients with adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) encompassing hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD) and eight Japanese patients with Nasu-Hakola disease (N-HD) and five age-matched Japanese controls were examined neuropathologically with special reference to lesion staging and dynamic changes of microglial subsets. In both diseases, the pathognomonic neuropathological features included spherically swollen axons (spheroids and globules), axon loss and changes of microglia in the white matter. In ALSP, four lesion stages based on the degree of axon loss were discernible: Stage I, patchy axon loss in the cerebral white matter without atrophy; Stage II, large patchy areas of axon loss with slight atrophy of the cerebral white matter and slight dilatation of the lateral ventricles; Stage III, extensive axon loss in the cerebral white matter and dilatation of the lateral and third ventricles without remarkable axon loss in the brainstem and cerebellum; Stage IV, devastated cerebral white matter with marked dilatation of the ventricles and axon loss in the brainstem and/or cerebellum.

View Article and Find Full Text PDF

Nasu-Hakola disease (NHD) is a rare intractable autosomal recessive disorder, characterized by pathological bone fractures and progressive dementia owing to multifocal bone cysts and leukoencephalopathy, caused by various genetic mutations of either DAP12 or TREM2. Loss-of-function of TREM2-DAP12, constituting a signaling complex on osteoclasts and microglia, plays a central role in the pathogenesis of NHD. Recently, NHD has been recognized as the disease entity designated "microgliopathy".

View Article and Find Full Text PDF

To obtain lactic acid bacteria that scavenge environmental hydrogen peroxide, we developed a specialized enrichment medium and successfully isolated Pediococcus pentosaceus Be1 strain from a fermented food. This strain showed vigorous environmental hydrogen peroxide scavenging activity over a wide range of hydrogen peroxide concentrations. High Mn-catalase and NADH peroxidase activities were found in the cell-free extract of the P.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionimb7k29rnp0kivehl1ef5a9j677efna2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once