Publications by authors named "Junichi Ogikubo"

A large set of free-base and transition-metal 5,10,15,20-tetraphenyl-substituted chlorins, bacteriochlorins, and isobacteriochlorins and their pyrrole-modified analogues were investigated by combined UV-visible spectroscopy, magnetic circular dichroism (MCD), density functional theory (DFT), and time-dependent DFT (TDDFT) approaches and their spectral characteristics were compared to those of the parent compounds, free-base tetraphenylporphyrin 1H2 and chlorin 2H2. It was shown that the nature of the pyrroline substituents in the chlorin derivatives dictates their specific UV-vis and MCD spectroscopic signatures. In all hydroporphyrin-like cases, MCD spectroscopy suggests that the ΔHOMO is smaller than the ΔLUMO for the macrocycle-centered frontier molecular orbitals.

View Article and Find Full Text PDF

A practical and highly site-selective copper-PhBPE-catalyst-controlled allenylation with propargyl boronates has been developed. The methodology has shown to be tolerant of diverse ketones and aldehydes providing the allenyl adducts in high selectivity. The BPE ligand and boronate substituents were shown to direct the site selectivity for which either propargyl or allenyl adducts can be acquired in high selectivity.

View Article and Find Full Text PDF

The formal replacement of one or two pyrrole groups in meso-tetraphenylporphyrin by oxazole moieties is described, generating inter alia the bacteriochlorin-type chromophores oxazolobacteriochlorins (oxabacteriochlorins) and bisoxazolobacteriochlorins (dioxabacteriochlorins). The key step is the conversion of a β,β'-dihydroxy-functionalized pyrroline group into an oxazolone or (substituted) oxazole. Depending on the substitution pattern on the oxazole or oxazoline moieties, mono- and dioxabacteriochlorins may have chlorin- or bacteriochlorin-like spectra.

View Article and Find Full Text PDF

The rational syntheses of meso-tetraaryl-3-oxo-2-oxaporphyrins 5, known as porpholactones, via MnO(4)(-)-mediated oxidations of the corresponding meso-tetraaryl-2,3-dihydroxychlorins (7) is detailed. Since chlorin 7 is prepared from the parent porphyrin 1, this amounts to a 2-step replacement of a pyrrole moiety in 1 by an oxazolone moiety. The stepwise reduction of the porpholactone 5 results in the formation of chlorin analogues, meso-tetraaryl-3-hydroxy-2-oxachlorin (11) and meso-tetraaryl-2-oxachlorins (12).

View Article and Find Full Text PDF

The formal replacement of a pyrrole moiety of meso-tetraarylporphyrin 1 by an oxazole moiety is described. The key step is the conversion of porpholactones 4 (prepared by a known two-step oxidation procedure from 1) by addition of alkyl Grignard reagent to form meso-tetraaryl-3-alkyl-2-oxachlorins 9 (alkyloxazolochlorins; alkyl = Me, Et, iPr). Hemiacetal 9 can be converted to an acetal, reduced to an ether, or converted to bis-alkyloxazolochlorins 11.

View Article and Find Full Text PDF

The general zinc-catalyzed allenylation of aldehydes and ketones with an allenyl boronate is presented. Preliminary mechanistic studies support a kinetically controlled process wherein, after a site-selective B/Zn exchange to generate a propargyl zinc intermediate, the addition to the electrophile effectively competes with propargyl-allenyl zinc equilibration. The utility of the methodology was demonstrated by application to a rhodium-catalyzed [4+2] cycloaddition.

View Article and Find Full Text PDF

Alkyl-Grignard addition to meso-tetraphenylporpholactone generates monoalkyl- and gem-bis-alkyloxazolochlorins. Together with compounds made by further synthetic manipulations of these derivatives, a series of chlorin-type chromophores with modulated optical properties is generated. Furthermore, their OsO(4)-mediated dihydroxylations and subsequent functional group transformations generate a family of bacteriochlorins that possess substituent-dependent optical properties.

View Article and Find Full Text PDF