This report describes a new experimental procedure, a rat unilateral, orthotopic lung transplantation with cold storage, and evaluates its relevancy and reliability to study the early events during cold ischemia/reperfusion (I/R) injury. This model, using the cuff technique, does not require extensive training and is relatively easy to be established. The model can induce reproducible degrees of pulmonary graft injury including impaired gas exchange, proinflammatory cytokine upregulation, or inflammatory infiltrates, depending on the preservation time.
View Article and Find Full Text PDFBackground: Toll-Like Receptor 4 (TLR4) signaling mediates early inflammation after cold ischemia-reperfusion (I/R). We hypothesized that the TLR4 coreceptor CD14, the intracellular adaptor proteins myeloid differentiation factor 88 (MyD88) and TIR domain-containing-adaptor inducing IFNbeta (TRIF) would be required for cold I/R induced inflammation. High mobility group box 1 (HMGB1) is a putative endogenous activator of TLR4.
View Article and Find Full Text PDFChronic allograft nephropathy (CAN) represents progressive deterioration of renal allograft function with fibroinflammatory changes. CAN, recently reclassified as interstitial fibrosis (IF) and tubular atrophy (TA) with no known specific etiology, is a major cause of late renal allograft loss and remains a significant deleterious factor of successful renal transplantation. Carbon monoxide (CO), an effector byproduct of heme oxygenase pathway, is known to have potent anti-inflammatory and antifibrotic functions.
View Article and Find Full Text PDFObjectives: In previous work we have demonstrated that delivery of low concentrations (250 ppm) of carbon monoxide by means of inhalation to donors, recipients, or both protects transplanted lungs from ischemia-reperfusion injury (improved gas exchange, diminished intragraft and systemic inflammation, and retention of graft vascular endothelial cell ultrastructure). In this study we examined whether delivery of carbon monoxide to lung grafts in the preservation solution could protect against lung ischemia-reperfusion injury.
Methods: Orthotopic left lung transplantation was performed in syngeneic Lewis to Lewis rats.
Renal ischemia/reperfusion injury is a major complication of kidney transplantation. We tested if ex vivo delivery of carbon monoxide (CO) to the kidney would ameliorate the renal injury of cold storage that can complicate renal transplantation. Orthotopic syngeneic kidney transplantation was performed in Lewis rats following 24 h of cold preservation in University of Wisconsin solution equilibrated without or with CO (soluble CO levels about 40 microM).
View Article and Find Full Text PDFBackground: We have previously shown that carbon monoxide (CO) inhalation at a low concentration provides protection against cold ischemia-reperfusion (I/R) injury after kidney transplantation. As vascular endothelial growth factor (VEGF) may promote the recovery process of impaired vascular endothelial cells during I/R injury, we examined whether protective effects of CO involved VEGF induction and its upstream hypoxia-inducible factor (HIF)-1 activation.
Methods: Lewis rat kidney graft, preserved in University of Wisconsin at 4 degrees C for 24 hr, was orthotopically transplanted into syngeneic recipient.
Background: Ischemia/reperfusion (I/R) injury leads to graft dysfunction and may contribute to alloimmune responses posttransplantation. The molecular mechanisms of cold I/R injury are only partially characterized but may involve toll-like receptor (TLR)-4 activation by endogenous ligands. We tested the hypothesis that TLR4 mediates the early inflammatory response in the setting of cold I/R in a murine cardiac transplant model.
View Article and Find Full Text PDFTreatment with inhaled carbon monoxide (CO) has been shown to ameliorate bowel dysmotility caused by surgical manipulation of the gut in experimental animals. We hypothesized that administration of CO dissolved in lactated Ringer's solution (CO-LR) might provide similar protection to that observed with the inhaled gas while obviating some of its inherent problems. Postoperative gut dysmotility (ileus) was induced in mice by surgical manipulation of the small intestine.
View Article and Find Full Text PDFBackground: Carbon monoxide (CO), a byproduct of heme catalysis by heme oxygenases, has been shown to provide protection against ischemia/reperfusion (I/R) injury. We examined the cytoprotective effect of CO at a low concentration on cold I/R injury of transplanted lung grafts.
Methods: Orthotopic left lung transplantation was performed in syngenic Lewis to Lewis rat combination.