Publications by authors named "Junichi Kitajima"

Background: Natural products are one of the most important sources of drugs used in pharmaceutical therapeutics. Screening of several natural products in the search for novel anticancer agents against human leukemia HL-60 cells led us to identify potent apoptosis-inducing activity in the essential oil fraction from Artemisia capillaris Thunb. flower.

View Article and Find Full Text PDF

Three flavonol glycosides were isolated from the leaves of Primula sieboldii. They were identified as quercetin 3-O-β-[xylopyranosyl-(1-->2)-β- glucopyranosyl-(1-->6)-β-glucopyranoside] (1), kaempferol 3-O-β-[glucopyranosyl-(1-->2)-β-glucopyranosyl-(1-->6)-β-glucopyranoside] (2) and kaempferol 3- O-β-[xylopyranosyl-(1-->2)-β-glucopyranosyl-(1-->6)-β-glucopyranoside] (3). Their chemical structures were determined by UV, 1H and 13C NMR spectroscopy, LC-MS and acid hydrolysis.

View Article and Find Full Text PDF

A flavonoid was isolated from the fronds of Asplenium ruta-muraria and A. altajense (Aspleniaceae) collected in the Altai Mountains and adjacent area. The compound was identified as kaempferol 3-O-β-[(6'''-E-caffeoylglucopyranosyl)-(1-->3)-glucopyranoside]-7-O-β-glucopyranoside (1) by UV, 1H and 13C NMR spectroscopy, LC-MS, and acid and alkaline hydrolyses.

View Article and Find Full Text PDF

Ultraviolet-B radiation is harmful to plants, and its intensity increases at altitude. So plants growing at high altitude possess UV protection systems. Flavonoid is known as a major UV protectant because it absorbs UV radiation and scavenges UV-induced free radicals in plant tissues.

View Article and Find Full Text PDF

New flavone glycoside, genkwanin 4'-O-β-glucopyranosyl-(1 --> 2)-O-α-rhamnopyranoside was isolated from the fronds of new chemotype of Asplenium normale D. Don, together with two known C-glycosylflavones, vicenin-2 and lucenin-2. The chemical structure of the isolated glycoside was established by UV, LC-MS, characterization of acid hydrolysates, and 1H and 13C NMR spectroscopy.

View Article and Find Full Text PDF

Hinesol is a unique sesquiterpenoid isolated from the Chinese traditional medicine, Atractylodes lancea rhizome. In a previous study, we screened various natural products in human leukemia HL-60 cells and identified an essential oil fraction from A. lancea rhizome that exhibited apoptosis-inducing activity in these cells; hinesol was subsequently shown to be the compound responsible for this apoptosis-inducing activity.

View Article and Find Full Text PDF

Six anthocyanins were isolated from the flowers of the Nagai line of Iris ensata Thunb. They were identified as petunidin and malvidin 3-O-beta-[(4"'-Z-p-coumaroyl-alpha-rhamnopyranosyl)-(1-->6)-beta-glucopyranoside]-5-O-beta-glucopyranosides (1 and 3) and their E-forms (2 and 4), and petunidin and malvidin 3-O-rutinoside-5-O-glucosides (5 and 6). Though the E-form of petunidin 3-O-[(4"'-p-coumaroylrhamnosyl)-(1-->6)-glucoside]-5-O-glucoside has been reported, its Z-form was found for the first time.

View Article and Find Full Text PDF

Foliar flavonoids of Crossostephium chinense in Japan and Taiwan were isolated and further characterized. Eighteen flavonoid aglycones, luteolin, apigenin, hispidulin, chrysoeriol, 5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone, jaceosidin, cilsimaritin, quercetin 3-methyl ether, axillarin, chrysosplenol-D, cirsiliol, apometzgerin, 5,7,3'-trihydroxy-6,4',5'-trimethoxyflavone, luteolin 3',4'-dimethyl ether, cirsilineol, eupatilin, nepetin and 5,7,3',4'-tetrahydroxy-6,5'-dimethoxyflavone, were identified by UV, 1H and 13C NMR spectroscopic, LC-MS and HPLC comparisons w ith authentic samples. The compounds existed on the leaf surface.

View Article and Find Full Text PDF

Three new acylated delphinidin glycosides, delphinidin 3-O-beta-[(2"-trans-caffeoylglucopyranosyl)-(1 --> 2)-(6"-succinylgalactopyranoside)]-7-O-beta-glucopyranoside (1), delphinidin 3-O-beta-[(2"-trans-caffeoylglucopyranosyl)-(1 --> 2)-(6"-trans-caffeoyl-tartaroyl-malonylgalactopyranoside)]-7-O-beta-glucopyranoside (2), and delphinidin 3-O-beta-[(2"-trans-caffeoylglucopyranosyl)-(1 --> 2)-(6"-trans-caffeoyl-tartaroyl-malonylgalactopyranoside)]-3'-O-beta-glucuronopyranoside (3), were isolated from the violet and violet-blue sepals of Clematis cultivars 'Jackmanii Superba' and 'Fujimusume'. The chemical structures of the isolated anthocyanins were determined by LC-MS, characterization of hydrolyzates, and UV, 1H and 13C NMR spectroscopy. The visible absorption spectra of these anthocyanins were compared with those of fresh sepals and crude extracts in pH 5.

View Article and Find Full Text PDF

Two new flavonol glycosides were isolated from the leaves of Triantha japonica, together with eight known flavonols, kaempferol 3-O-sophoroside, kaempferol 3-O-sambubioside, kaempferol 3-O-glucosyl-(1 --> 2)-[glucosyl-(1 --> 6)-glucoside], quercetin 3-O-sophoroside, quercetin 3-O-sambubioside, isorhamnetin 3-O-glucoside, isorhamnetin 3-O-sophoroside and isorhamnetin 3-O-sambubioside. The new compounds were identified as kaempferol 3-O-beta-xylopyranosyl-(1 --> 2)-[beta-glucopyranosyl-(1 --> 6)-beta-glucopyranoside] (1) and isorhamnetin 3-O-beta-xylopyranosyl-(1 --> 2)-[beta-glucopyranosyl-(1 --> 6)-beta-glucopyranoside] (3) by UV, LC-MS, acid hydrolysis, and 1H and 13C NMR spectroscopy. Another two new flavonol glycosides were isolated from theleaves of Tofieldia nuda, and identified as kaempferol 3-O-beta-glucopyranosyl-(1 --> 2)-[beta-glucopyranosyl-(1 --> 6)-beta-galactopyranoside] (4) and quercetin 3-O-beta-glucopyranosyl-(1 --> 2)-[beta-glucopyranosyl-(1 --> 6)-beta-galactopyranoside] (5).

View Article and Find Full Text PDF

A new kaempferol glycoside, kaempferol 3-O-alpha-rhamnopyranosyl-(1 --> 6)-beta-glucopyranoside-7,4'-di-O-beta-glucopyranoside (1) was isolated from the flowers of Clematis cultivars "Jackmanii Superba" and "Fujimusume", together with the known compound kaempferol 3,7,4'-tri-O-beta-glucopyranoside (2). The chemical structures of the isolated kaemferol glycosides were established by UV, 1H and 13C NMR spectroscopy, LC-MS, and characterization of acid hydrolysates.

View Article and Find Full Text PDF

There are substantial genotypic differences in the levels of flavonol glycosides (FGs) in soybean leaves. The first objective of this study was to identify and locate genes responsible for FG biosynthesis in the soybean genome. The second objective was to clone and verify the function of these candidate genes.

View Article and Find Full Text PDF

Seventeen C-glycosylflavones including four novel ones, were isolated from the flowers of Dutch iris (Iris hollandica Hort. ex Todd.) cultivar 'Blue Diamond'.

View Article and Find Full Text PDF

Soybean (Glycine max) is a major crop in the world. Three new flavonol 3-O-glycosides, kaempferol 3-O-alpha-L-rhamnopyranosyl-(1 --> 4)-[alpha-L-rhamnopyranosyl-(1 --> 6)-beta-D-galactopyranoside] (1), kaempferol 3-O-alpha-L-rhamnopyranosyl-(1 --> 4)-[beta-D-glucopyranosyl-(1 --> 6)-beta-D-galactopyranoside] (4) and quercetin 3-O-beta-D-glucopyranosyl-(1--> 2)-[alpha-L-rhamnopyranosyl-(1 --> 6)-beta-galactopyranoside] (5) were isolated from the leaves of soybean cultivars, together with three known compounds, kaempferol 3-O-beta-D-glucopyranosyl-(1 --> 2)-[alpha-L-rhamnopyranosyl-(1--> 6)-beta-D-galactopyranoside] (2), kaempferol 3-O-beta-D-glucopyranosyl-(1 --> 2)-[alpha-L-rhamnopyranosyl-(1 --> 6)-beta-D-glucopyranoside] (3) and quercetin 3-O-beta-D-glucopyranosyl-(1 --> 2)-[alpha-L-rhamnopyranosyl-(1 --> 6)-beta-D-glucopyranoside] (6), and also common flavonoids. The isolated compounds possess similar structures and high water solubility, and so it was hard to isolate them (in particular 5 and 6) with a normal preparative HPLC system.

View Article and Find Full Text PDF

A new kaempferol glycoside, kaempferol 3-O-alpha-rhamnopyranosyl-(1 --> 2)-[alpha-rhamnopyranosyl-(1 --> 6)-beta-glucopyranoside]-7-O-beta-glucopyranoside (2) was isolated from the flowers of Clematis cultivar "Jackmanii Superba", together with a known kaempferol 3-O-alpha-rhamnopyranosyl-(1 --> 6)-beta-glucopyranoside-7-O-beta-glucopyranoside (1). The chemical structures of the isolated glycosides were established by UV, LC-MS, characterization of acid hydrolysates, and 1H and 13C NMR spectroscopy.

View Article and Find Full Text PDF

The antioxidant activities of flavonoids and their glycosides were measured with the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH radical, DPPH(·)) scavenging method. The results show that free hydroxyl flavonoids are not necessarily more active than O-glycoside. Quercetin and kaempferol showed higher activity than apigenin.

View Article and Find Full Text PDF

Two new flavone rhamnosides, apigenin 7-O-alpha-L-rhamnopyranosyl-(1-->4)-O-alpha-L-rhamnopyranoside and apigenin 7-O-alpha-L-rhamnopyranosyl-(1-->4)-O-alpha-L-rhamnopyranoside-4'-O-alpha-L-rhamnopyranoside were isolated from the fronds of Asplenium normale D. Don, together with two known C-glycosylflavones, vicenin-2 and lucenin-2. The chemical structures of the isolated glycosides were established by UV, LC-MS, characterization of acid hydrolysates, and 1H and 13C NMR spectroscopy.

View Article and Find Full Text PDF

W1, W3, W4, and Wm genes control flower color, whereas T and Td genes control pubescence color in soybean. W1, W3, Wm, and T are presumed to encode flavonoid 3'5'-hydroxylase (EC 1.14.

View Article and Find Full Text PDF

Japonolirion, comprising Japonolirion osense Nakai, which occurs on serpentinite at two widely separated localities in Japan, has been considered as an isolated taxon, but more recently has been proved by molecular evidence to be a sister group to an achlorophyllous, mycoheterotrophic genus, Petrosavia. In an effort to research possible characters linking these groups, we analyzed the flavonoid compounds obtained from leaves of Japonolirion using UV spectra, mass spectrometry and 1H and 13C nuclear magnetic resonance, and acid hydrolysis of the original glycosides as well as direct thin layer chromatography and high performance liquid chromatography comparisons with authentic specimens. As a result, we identified seven flavonoids, of which two were major components identified as 6-C-glucosylquercetin 3-O-glucoside and isoorientin.

View Article and Find Full Text PDF

From the polar portion of the methanol extract of thyme (leaf of Thymus vulgaris; Labiatae), which has been used as an important stomachic, carminative, a component of prepared cough tea, and a spice, seven monoterpenoid glycosides were isolated together with two known monoterpenoids and three known monoterpenoid glucosides. Structures of the seven monoterpenoid glycosides were determined by spectral analysis.

View Article and Find Full Text PDF

From the polar portion of the methanol extract of thyme (leaf of Thymus vulgaris; Labiatae), which has been used as a stomachic, carminative, a component of prepared cough tea, and as a spice, a new hydroxyjasmone glucoside, (Z)-5'-hydroxyjasmone 5'-O-beta-D-glucopyranoside was isolated together with five related compounds and four aromatic compounds. The structures of the new compound was clarified by spectral investigation.

View Article and Find Full Text PDF

UV-absorbing substances were isolated from the translucent bracts of Rheum nobile, which grows in the alpine zone of the eastern Himalayas. Nine kinds of the UV-absorbing substances were found by high performance liquid chromatography (HPLC) and paper chromatography (PC) surveys. All of the five major compounds are flavonoids, and were identified as quercetin 3- O-glucoside, quercetin 3- O-galactoside, quercetin 3- O-rutinoside, quercetin 3- O-arabinoside and quercetin 3- O-[6"-(3-hydroxy-3-methylglutaroyl)-glucoside] by UV, 1H and 13C NMR, mass spectra, and acid hydrolysis of the original glycosides, and direct PC and HPLC comparisons with authentic specimens.

View Article and Find Full Text PDF

From the water-soluble portion of the methanol extract of celery seed (fruit of Apium graveolens L.) five sesquiterpenoid glucosides (celerioside A-E) and three phthalide glycosides (celephtalide A-C) were isolated together with six aromatic compound glucosides, two norcarotenoid glucosides and a lignan glucoside. Their structures were determined by spectral investigations.

View Article and Find Full Text PDF

A new coumarin glycoside and a new glycoside of an acetylene derivative were isolated from the water-soluble portion of the methanolic extract of Atractylodes ovata rhizome together with eight known compounds. Their structures were characterized as scopoletin beta-D-xylopyranosyl-(1-->6)-beta-D-glucopyranoside and (2E)-2-decene-4,6-diyne-1,8-diol 8-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside, respectively, based on chemical and spectroscopic investigations. A comparison of the polar constituents among Atractylodes japonica, Atractylodes lancea, and A.

View Article and Find Full Text PDF

From the water-soluble portion of the methanolic extract of the amomum seed (seed of Amomum xanthioides WALL.), which has been used as a medicine for stomachic and digestive disorders, ten compounds, including two new and three newly isolated monoterpenoid glucosides and a newly isolated octane-tetrol, were isolated. Their structures were determined by spectral investigation.

View Article and Find Full Text PDF