Publications by authors named "Junichi Iwata"

Sjögren's disease (SjD) is a systemic autoimmune disorder characterized by dry eyes and mouth caused by chronic inflammation and is often accompanied by various extra-glandular manifestations, including fatigue and diffuse pain. Although the pathogenesis of the disease remains elusive, several factors (e.g.

View Article and Find Full Text PDF

Frontonasal malformations are caused by a failure in the growth of the frontonasal prominence during development. Although genetic studies have identified genes that are crucial for frontonasal development, it remains largely unknown how these genes are regulated during this process. Here, we show that microRNAs, which are short non-coding RNAs capable of targeting their target mRNAs for degradation or silencing their expression, play a crucial role in the regulation of genes related to frontonasal development in mice.

View Article and Find Full Text PDF

Orofacial clefts (OFCs) are common congenital birth defects with various etiologies, including genetic variants. Online Mendelian Inheritance in Man (OMIM) annotated several hundred genes involving OFCs. Furthermore, several hundreds of de novo variants (DNVs) have been identified from individuals with OFCs.

View Article and Find Full Text PDF

DHCR7 and SC5D are enzymes crucial for cholesterol biosynthesis, and mutations in their genes are associated with developmental disorders, which are characterized by craniofacial deformities. We have recently reported that a loss of either Dhcr7 or Sc5d results in a failure in osteoblast differentiation. However, it remains unclear to what extent a loss of function in either DHCR7 or SC5D affects craniofacial skeletal formation.

View Article and Find Full Text PDF

Perturbations in gene regulation during palatogenesis can lead to cleft palate, which is among the most common congenital birth defects. Here, we perform single-cell multiome sequencing and profile chromatin accessibility and gene expression simultaneously within the same cells (n = 36,154) isolated from mouse secondary palate across embryonic days (E) 12.5, E13.

View Article and Find Full Text PDF

Introduction: Mutations in genes related to cholesterol metabolism, or maternal diet and health status, affect craniofacial bone formation. However, the precise role of intracellular cholesterol metabolism in craniofacial bone development remains unclear.

Objective: The aim of this study is to determine how cholesterol metabolism aberrations affect craniofacial bone development.

View Article and Find Full Text PDF

Cleft lip and palate is one of the most common congenital birth defects and has a complex etiology. Either genetic or environmental factors, or both, are involved at various degrees, and the type and severity of clefts vary. One of the longstanding questions is how environmental factors lead to craniofacial developmental anomalies.

View Article and Find Full Text PDF
Article Synopsis
  • Hematopoietic stem/progenitor cells (HSCs) rely on interactions with mesenchymal stem/stromal cells (MSCs) to maintain their self-renewal and multipotency, which are crucial for medical applications.
  • Culturing MSCs to increase their numbers leads to a loss of important stem cell traits, including their ability to differentiate and proliferate effectively.
  • The study reveals that the c-Mpl signaling pathway is vital for HSC maintenance and enhances MSC proliferation; without this signaling, both HSC functionality and MSC stem cell markers are diminished.
View Article and Find Full Text PDF

Sjögren's syndrome (SjS) is a chronic autoimmune disease characterized by immune cell infiltration of the exocrine glands, mainly the salivary and lacrimal glands. Despite recent advances in the clinical and mechanistic characterization of the disease, its etiology remains largely unknown. Here, we report that mice with a deficiency for either Atg7 or Atg3, which are enzymes involved in the ubiquitin modification pathway, in the salivary glands exhibit a SjS-like phenotype, characterized by immune cell infiltration with autoantibody detection, acinar cell death, and dry mouth.

View Article and Find Full Text PDF

High-resolution computed tomography (CT) is widely used to assess bone structure under physiological and pathological conditions. Although the analytic protocols and parameters for micro-CT (μCT) analyses in mice are standardized for long bones, vertebrae, and the palms in aging mice, they have not yet been established for craniofacial bones. In this study, we conducted a morphometric assessment of craniofacial bones, in comparison with long bones, in aging mice.

View Article and Find Full Text PDF

The etiology of cleft lip with or without cleft palate (CL/P), a common congenital birth defect, is complex, with genetic and epigenetic, as well as environmental, contributing factors. Recent studies suggest that fetal development is affected by maternal conditions through microRNAs (miRNAs), a group of short noncoding RNAs. Here, we show that miR-129-5p and miR-340-5p suppress cell proliferation in both primary mouse embryonic palatal mesenchymal cells and O9-1 cells, a neural crest cell line, through the regulation of Sox5 and Trp53 by miR-129-5p, and the regulation of Chd7, Fign and Tgfbr1 by miR-340-5p.

View Article and Find Full Text PDF

Amelogenesis imperfecta is a congenital disorder within a heterogeneous group of conditions characterized by enamel hypoplasia. Patients suffer from early tooth loss, social embarrassment, eating difficulties, and pain due to an abnormally thin, soft, fragile, and discolored enamel with poor aesthetics and functionality. The etiology of amelogenesis imperfecta is complicated by genetic interactions.

View Article and Find Full Text PDF

Cleft lip with or without cleft palate (CL/P) is one of the most common congenital birth defects. This study aims to identify novel pathogenic microRNAs associated with cleft palate (CP). Through data analyses of miRNA-sequencing for developing palatal shelves of C57BL/6J mice, we found that miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p were significantly upregulated, and that miR-19a-3p, miR-130a-3p, miR-301a-3p, and miR-486b-5p were significantly downregulated, at embryonic day E14.

View Article and Find Full Text PDF

Although multiple studies have investigated the mesenchymal stem and progenitor cells (MSCs) that give rise to mature bone marrow, high heterogeneity in their morphologies and properties causes difficulties in molecular separation of their distinct populations. In this study, by taking advantage of the resolution of the single cell transcriptome, we analyzed Sca-1 and PDGFR-α fraction in the mouse bone marrow tissue. The single cell transcriptome enabled us to further classify the population into seven populations according to their gene expression profiles.

View Article and Find Full Text PDF

Cleft lip with/without cleft palate (CL/P) is one of the most common congenital birth defects, showing the complexity of both genetic and environmental contributions [e.g., maternal exposure to alcohol, cigarette, and retinoic acid (RA)] in humans.

View Article and Find Full Text PDF

The etiology of cleft lip with/without cleft palate (CL/P), one of the most frequent craniofacial birth defects worldwide, is complicated by contributions of both genetic and environmental factors. Understanding the etiology of these conditions is essential for developing preventive strategies. This study thus aims to identify regulatory networks of microRNAs (miRNAs), transcriptional factors (TFs) and non-TF genes associated with cleft lip (CL) that are conserved in humans and mice.

View Article and Find Full Text PDF

Amelogenesis imperfecta is a congenital form of enamel hypoplasia. Although a number of genetic mutations have been reported in humans, the regulatory network of these genes remains mostly unclear. To identify signatures of biological pathways in amelogenesis imperfecta, we conducted bioinformatic analyses on genes associated with the condition in humans.

View Article and Find Full Text PDF

Cleft palate is the second most common congenital birth defect, and both environmental and genetic factors are involved in the etiology of the disease. However, it remains largely unknown how environmental factors affect palate development. Our previous studies show that several microRNAs (miRs) suppress the expression of genes involved in cleft palate.

View Article and Find Full Text PDF

Bone is an active organ that is continuously remodeled throughout life via formation and resorption; therefore, a fine-tuned bone (re)modeling is crucial for bone homeostasis and is closely connected with energy metabolism. Amino acids are essential for various cellular functions as well as an energy source, and their synthesis and catabolism (e.g.

View Article and Find Full Text PDF