Publications by authors named "Junichi Enokizono"

Comprehensive analyses of intracellular disposition and in vivo pharmacokinetics were performed for small interfering RNA (siRNA) conjugated with the Fab fragment of panitumumab, a fully humanized monoclonal antibody against epidermal growth factor receptor (EGFR). The Fab-siRNA conjugate was internalized into EGFR-expressing cancer cells in an antigen-dependent manner. Intracellular disposition was quantitatively evaluated using fluorescent-labeled panitumumab and confocal microscopy.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) is a tumor-specific antigen overexpressed in multiple cancers. CEA is expressed as a membrane protein, a part of which is cleaved from the cell membrane and secreted into blood. The soluble form of CEA (sCEA) has been shown to accelerate the clearance of anti-CEA antibody, which limits the antibody distribution in the tumor.

View Article and Find Full Text PDF

We developed a lipid nanoparticle formulation (LNPK15) to deliver siRNA to a tumor for target gene knock down. LNPK15 is highly PEGylated with 3.3% 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-(polyethylene glycol-2000) (PEG-DSPE) and shows a long duration: the half-lives of siRNA in LNPK15 were 15.

View Article and Find Full Text PDF

In vivo biodistribution analyses, especially in tumors, of nucleic acids delivered with nanoparticles are important to develop drug delivery technologies for medical use. We previously developed wrapsome® (WS), an ~100 nm liposomal nanoparticle that can encapsulate siRNA, and reported that WS accumulates in tumors in vivo and inhibits their growth by an enhanced permeability and retention effect. In the present study, we evaluated the pharmacokinetics of nucleic acid-containing nanoparticles by combining dynamic positron emission tomography (PET) imaging and liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) utilize a photosensitizing agent and light for cancer therapy. It exerts anti-cancer effect mainly by inducing vascular occlusion at the irradiated site. By controlling the irradiation area, PDT can be used in a tumor-specific manner.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) is a classic tumor-specific antigen that is overexpressed in several cancers, including gastric cancer. Although some anti-CEA antibodies have been tested, to the best of our knowledge, there are currently no clinically approved anti-CEA antibody therapies. Because of this, we have created the novel anti-CEA antibody, 15-1-32, which exhibits stronger binding to membrane-bound CEA on cancer cells than existing anti-CEA antibodies.

View Article and Find Full Text PDF

Engineered cysteine residues are particularly convenient for site-specific conjugation of antibody-drug conjugates (ADC), because no cell engineering and additives are required. Usually, unpaired cysteine residues form mixed disulfides during fermentation in Chinese hamster ovarian (CHO) cells; therefore, additional reduction and oxidization steps are required prior to conjugation. In this study, we prepared light chain (Lc)-Q124C variants in IgG and examined the conjugation efficiency.

View Article and Find Full Text PDF

Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family and is an important therapeutic target in some types of human cancers. KM3566 is a mouse anti-HB-EGF monoclonal antibody that neutralizes HB-EGF activity by inhibiting the binding of HB-EGF to its receptors. Based on the results of our pharmacokinetics study, a humanized derivative antibody, KHK2866, is rapidly cleared from serum and shows nonlinear pharmacokinetics in cynomolgus monkeys.

View Article and Find Full Text PDF

Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that bind to and activate the EGF receptor. HB-EGF is synthesized as a membrane-anchored protein (proHB-EGF), and then proteolytically cleaved, resulting in the mitogenically active soluble form. HB-EGF plays pivotal roles in pathophysiological processes such as development and cell proliferation.

View Article and Find Full Text PDF

The role of breast cancer resistance protein (BCRP/ABCG2) in limiting the brain and testis penetration of xenobiotic compounds in the blood-brain and -testis barriers was investigated using Bcrp(-/-) mice. Tissue/plasma concentration ratios in the brain (K(p,brain)) and testis (K(p,testis)) obtained under steady-state conditions were significantly increased in Bcrp(-/-) mice for PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), N-hydroxyl PhIP, MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline), dantrolene, and prazosin. In addition, the K(p,brain) of triamterene and the K(p,testis) of 4'-hydroxyl PhIP were also significantly increased in Bcrp(-/-) mice.

View Article and Find Full Text PDF

The effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of the phytoestrogens daidzein, genistein, and coumestrol was investigated using Bcrp(-/-) mice. Expression of the genes for either mouse Bcrp or human BCRP in MDCK II cells induced apically directed transport of the three phytoestrogens, whereas their transcellular transport was identical in mock and LLC-PK1 cells expressing mouse Mdr1a. After oral administration, the plasma levels of daidzein and genistein were increased in Bcrp(-/-) mice, but only a minimal change was observed for coumestrol.

View Article and Find Full Text PDF

Breast cancer resistance protein (Bcrp/Abcg2) is a member of the ATP-binding cassette transporter family with the ability to transport a variety of sulfate conjugates. In the present study, the regional expression and activity of Bcrp and sulfotransferases (SULTs/Sults) were investigated in mouse intestine. Western blotting analysis revealed the highest expression of Bcrp in the ileum over the duodenum, jejunum, and colon.

View Article and Find Full Text PDF

The synthesis of a series of 4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)methyl-2-arylbenzofuran and 4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)methylbenzofuran-2-carboxamide derivatives as novel alpha(2C)-adrenergic receptor antagonists are described. Their affinity at three different human alpha(2)-adrenergic receptors is reported, and some of these compounds exhibited high affinity for the alpha(2C)-adrenergic receptor with high subtype selectivity. Among them, compound 10e has been found to show the anti-L-dopa-induced dyskinetic activity in marmosets.

View Article and Find Full Text PDF

Troglitazone sulfate (TGZS) is the major metabolite of troglitazone (TGZ), an antidiabetic agent, and thought to be a cause of the cholestasis induced by TGZ. The aim of the present study is to elucidate the involvement of breast cancer resistance protein (BCRP/ABCG2) in the hepatic disposition of TGZS. The basal-to-apical transport of TGZS was enhanced in organic anion transporting polypeptide 1B1-expressing Madin-Darby canine kidney II cells by infection of recombinant adenovirus harboring human BCRP and mouse Bcrp cDNA.

View Article and Find Full Text PDF