Mechanically activating (MA) channels transduce numerous physiological functions. Tentonin 3/TMEM150C (TTN3) confers MA currents with slow inactivation kinetics in somato- and barosensory neurons. However, questions were raised about its role as a Piezo1 regulator and its potential as a channel pore.
View Article and Find Full Text PDFInformation processing in artificial neural networks is largely dependent on the nature of neuron models. While commonly used models are designed for linear integration of synaptic inputs, accumulating experimental evidence suggests that biological neurons are capable of nonlinear computations for many converging synaptic inputs via homo- and heterosynaptic mechanisms. This nonlinear neuronal computation may play an important role in complex information processing at the neural circuit level.
View Article and Find Full Text PDFThe purpose of this study was to explore different patterns of functional networks between amnestic mild cognitive impairment (aMCI) and non-aMCI (naMCI) using electroencephalography (EEG) graph theoretical analysis. The data of 197 drug-naïve individuals who complained cognitive impairment were reviewed. Resting-state EEG data was acquired.
View Article and Find Full Text PDFSeveral studies have documented the broad-spectrum bioactivities of a lotus seed ( [PN]) green embryo extract. However, the specific bioactive components and associated molecular mechanisms remain largely unknown. This study aimed to identify the ion channel-activating mechanisms of PN extracts.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2022
Background: Neurons have specialized structures that facilitate information transfer using electrical and chemical signals. Within the perspective of neural computation, the neuronal structure is an important prerequisite for the versatile computational capabilities of neurons resulting from the integration of diverse synaptic input patterns, complex interactions among the passive and active dendritic local currents, and the interplay between dendrite and soma to generate action potential output. For this, characterization of the relationship between the structure and neuronal spike dynamics could provide essential information about the cellular-level mechanism supporting neural computations.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
October 2021
: Ever since the seminal work by McCulloch and Pitts, the theory of neural computation and its philosophical foundation known as 'computationalism' have been central to brain-inspired artificial intelligence (AI) technologies. The present study describes neural dynamics and neural coding approaches to understand the mechanisms of neural computation. The primary focus is to characterize the multiscale nature of logic computations in the brain, which might occur at a single neuron level, between neighboring neurons via synaptic transmission, and at the neural circuit level.
View Article and Find Full Text PDFCervical spondylolytic spondylolisthesis is a rare congenital anomaly. It is often misunderstood as a result of trauma. However, most of them are congenital deformities.
View Article and Find Full Text PDFThe brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5'-triphosphate (ATP), the biochemical energy.
View Article and Find Full Text PDF