Current silicon-based CMOS devices face physical limitations in downscaling size and power loss, restricting their capability to meet the demands for data storage and information processing of emerging technologies. One possible alternative is to encode the information in a non-volatile magnetic state and manipulate this spin state electronically, as in spintronics. However, current spintronic devices rely on the current-driven control of magnetization, which involves Joule heating and power dissipation.
View Article and Find Full Text PDFvan der Waals magnets are emerging as a promising material platform for electric field control of magnetism, offering a pathway toward the elimination of external magnetic fields from spintronic devices. A further step is the integration of such magnets with electrical gating components that would enable nonvolatile control of magnetic states. However, this approach remains unexplored for antiferromagnets, despite their growing significance in spintronics.
View Article and Find Full Text PDFTwo-dimensional magnets and superconductors are emerging as tunable building-blocks for quantum computing and superconducting spintronic devices, and have been used to fabricate all two-dimensional versions of traditional devices, such as Josephson junctions. However, novel devices enabled by unique features of two-dimensional materials have not yet been demonstrated. Here, we present NbSe/CrSBr van der Waals superconducting spin valves that exhibit infinite magnetoresistance and nonreciprocal charge transport.
View Article and Find Full Text PDFDefect engineering is one of the key technologies in materials science, enriching the modern semiconductor industry and providing good test-beds for solid-state physics. While homogenous doping prevails in conventional defect engineering, various artificial defect distributions have been predicted to induce desired physical properties in host materials, especially associated with symmetry breakings. Here, we show layer-by-layer defect-gradients in two-dimensional PtSe films developed by selective plasma treatments, which break spatial inversion symmetry and give rise to the Rashba effect.
View Article and Find Full Text PDFThe exfoliation of layered magnetic materials generates atomically thin flakes characterized by an ultrahigh surface sensitivity, which makes their magnetic properties tunable via external stimuli, such as electrostatic gating and proximity effects. Another powerful approach to engineer magnetic materials is molecular functionalization, generating hybrid interfaces with tailored magnetic interactions, called spinterfaces. However, spinterface effects have not yet been explored on layered magnetic materials.
View Article and Find Full Text PDFSpin thermoelectrics, an emerging thermoelectric technology, offers energy harvesting from waste heat with potential advantages of scalability and energy conversion efficiency, thanks to orthogonal paths for heat and charge flow. However, magnetic insulators previously used for spin thermoelectrics pose challenges for scale-up due to high temperature processing and difficulty in large-area deposition. Here, we introduce a molecule-based magnetic film for spin thermoelectric applications because it entails versatile synthetic routes in addition to weak spin-lattice interaction and low thermal conductivity.
View Article and Find Full Text PDFThe pristine graphene described with massless Dirac fermion could bear topological insulator state and ferromagnetism via the band structure engineering with various adatoms and proximity effects from heterostructures. In particular, topological Anderson insulator state was theoretically predicted in tight-binding honeycomb lattice with Anderson disorder term. Here, we introduced physi-absorbed Fe-clusters/adatoms on graphene to impose exchange interaction and random lattice disorder, and we observed Anderson insulator state accompanying with Kondo effect and field-induced conducting state upon applying the magnetic field at around a charge neutral point.
View Article and Find Full Text PDFA polar conductor, where inversion symmetry is broken, may exhibit directional propagation of itinerant electrons, i.e., the rightward and leftward currents differ from each other, when time-reversal symmetry is also broken.
View Article and Find Full Text PDFIndividual molecular spins are promising quantum states for emerging computation technologies. The "on surface" configuration of molecules in proximity to a magnetic film allows control over the orientations of molecular spins and coupling between them. The stacking of planar molecular spins could favor antiferromagnetic interlayer couplings and lead to pinning of the magnetic underlayer via the exchange bias, which is extensively utilized in ultrafast and high-density spintronics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2018
The longitudinal spin Seebeck effects with a ferro- or ferrimagnetic insulator provide a new architecture of a thermoelectric device that could significantly improve the energy conversion efficiency. Until now, epitaxial yttrium iron garnet (YIG) films grown on gadolinium gallium garnet (GGG) substrates by a pulsed laser deposition have been most widely used for spin thermoelectric energy conversion studies. In this work, we developed a simple route to obtain a highly uniform solution-processed YIG film and used it for the on-chip microelectronic spin Seebeck characterization.
View Article and Find Full Text PDFAtomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique. Here, we report atomic scale study of heteroepitaxial growth and relationship of a single-atom-thick ZnO layer on graphene using atomic layer deposition.
View Article and Find Full Text PDFA two-dimensional electron gas emerged at a LaAlO/SrTiO interface is an ideal system for "spin-orbitronics" as the structure itself strongly couple the spin and orbital degree of freedom through the Rashba spin-orbit interaction. One of core experiments toward this direction is the nonlocal spin transport measurement, which has remained elusive due to the low spin injection efficiency to this system. Here we bypass the problem by generating a spin current not through the spin injection from outside but instead through the inherent spin Hall effect and demonstrate the nonlocal spin transport.
View Article and Find Full Text PDFElectrical control of ferromagnetism in semiconductor nanostructures offers the promise of nonvolatile functionality in future semiconductor spintronics. Here, we demonstrate a dramatic gate-induced change of ferromagnetism in ZnO nanowire (NW) field-effect transistors (FETs). Ferromagnetism in our ZnO NWs arose from oxygen vacancies, which constitute deep levels hosting unpaired electron spins.
View Article and Find Full Text PDFWe previously identified the rice (Oryza sativa) senescence-associated gene OsSAP which encodes a highly conserved protein involved in anti-apoptotic activity. This novel Bax suppressor-related gene regulates tolerance to multiple stresses in yeast. Here, we show the effects of drought stress on leaf and root tissues of plants over-expressing OsSAP in relation to the levels of phytohormones, abscisic acid (ABA), jasmonic acid (JA), indole-3-carboxylic acid (ICA), gibberellic acid (GA), and zeatin.
View Article and Find Full Text PDFThe performances of organic electronic and/or photonic devices rely heavily on the nature of the inorganic/organic interface. Control over such hybrid interface properties has been an important issue for optimizing the performances of polymer solar cells bearing metal-oxide conducting channels. In this work, we studied the effects of an interfacial atomic layer in an inverted polymer solar cell based on a ZnO nanorod array on the device performance as well as the dynamics of the photoexcited carriers.
View Article and Find Full Text PDF