Skin aging involves biomechanical changes like decreased elasticity, increased wrinkle formation, and altered barrier function. The skin microbiome significantly impacts this process. Here, we investigated the effects of decreased abundance and increase in other skin microorganisms on skin biomechanical properties in 60 healthy Koreans from Seoul, divided into younger (20-29 years) and older (60-75 years) groups.
View Article and Find Full Text PDFCarotenoids are valuable pigments naturally occurring in all photosynthetic plants and microalgae as well as in selected fungi, bacteria, and archaea. Green microalgae developed a complex carotenoid profile suitable for efficient light harvesting and light protection and harbor great capacity for carotenoid production through the substantial power of the endogenous 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Previous works established successful genome editing and induced significant changes in the cellular carotenoid content in .
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
March 2024
Background: Photosynthetic microalgae are known for their sustainable and eco-friendly potential to convert carbon dioxide into valuable products. Nevertheless, the challenge of self-shading due to high cell density has been identified as a drawback, hampering productivity in sustainable photoautotrophic mass cultivation. To address this issue, mutants with altered pigment composition have been proposed to allow a more efficient light diffusion but further study on the role of the different pigments is still needed to correctly engineer this process.
View Article and Find Full Text PDFBackground: The hair growth cycle consists of the anagen, catagen, and telogen phases, and hair follicle dermal papilla (HDP) cells of human hair play a role in the initiation and maintenance of the anagen phase. Reduction in HDP cells contributes to hair loss; however, the limited treatment options are associated with negative side effects. Therefore, a naturally derived substance with hair loss-preventing properties is needed.
View Article and Find Full Text PDFCRISPR-Cas has revolutionized genetic modification with its comparative simplicity and accuracy, and it can be used even at the genomic level. Microalgae are excellent feedstocks for biofuels and nutraceuticals because they contain high levels of fatty acids, carotenoids, and other metabolites; however, genome engineering for microalgae is not yet as developed as for other model organisms. Microalgal engineering at the genetic and metabolic levels is relatively well established, and a few genomic resources are available.
View Article and Find Full Text PDFGraphene oxide-cysteamine-silver nanoparticle (GCA)/silver nanowire (AgNW)/GCA/colorless poly(amide-imide) (cPAI) structures based on cPAI substrates with polyimide and polyamide syntheses were fabricated to study their characteristics. A layer of electrodes was constructed using a sandwich structure-such as GCA/AgNW/GCA-with cPAI used as a substrate to increase the heat resistance and improve their mechanical properties. Furthermore, to overcome the disadvantages of AgNWs-such as their high surface roughness and weak adhesion between the substrate and electrode layers-electrodes with embedded structures were fabricated using a peel-off process.
View Article and Find Full Text PDFMicrob Cell Fact
February 2022
Background: The photosynthetic microorganism Chlamydomonas reinhardtii has been approved as generally recognized as safe (GRAS) recently, this can excessively produce carotenoid pigments and fatty acids. Zeaxanthin epoxidase (ZEP), which converts zeaxanthin to violaxanthin, and ADP-glucose pyrophosphorylase (AGP). These are key regulating genes for the xanthophyll and starch pathways in C.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2020
Graphene oxide (GO)-cysteamine-Ag nanoparticles (GCA)-silver nanowire (AgNW) fabricated by depositing GCA over sprayed AgNWs on PET films were proposed for transparent and flexible electrodes, and their optical, electrical, and mechanical properties were analyzed by energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, current-voltage measurements, and bending test. GCA-AgNW electrodes show optical transmittance of >80% at 550 nm and exhibit a high figure-of-merit value of up to 116.13 in the samples with sheet resistances of 20-40 Ω/◻.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
November 2020
We investigated the use of a silver reflector embedded with Ni-Cu nanoparticles to achieve low resistance and high reflectivity in GaN-based flip-chip light-emitting diodes. Compared to a single layer of Ag, the NC-NPs/Ag reflector exhibits a higher light reflectance of ~90% at a wavelength of 450 nm, a lower contact resistance of 4.75 × 10 II cm², and improved thermal stability after annealing at 400°C.
View Article and Find Full Text PDFIn this study, we propose a method to quantitatively analyze the concentration of VOCs adsorbed on zeolite filters via gas chromatography (GC). The sampled VOCs from the filters with ethanol as a solution were characterized using GC to determine the concentration of the adsorbed VOCs by comparing the areas of GC peaks of the detected VOCs and ethanol. The proposed method also enabled determination of the desorption (regeneration) conditions of the zeolite filters according to heating temperature and time for various VOCs.
View Article and Find Full Text PDF2,6-Diaminoanthracene (AnDA)-functionalized graphene oxide (GO) (AnDA-GO) was prepared and used to synthesize a graphene oxide-based polyimide (PI-GO) by the in-situ polymerization method. A PI-GO nanocomposite thin film was prepared and characterized by infrared (IR) spectroscopy, thermogravimetric analysis (TGA) and UV-visible spectroscopy. The PI-GO film was used as a memory layer in the fabrication of a resistive random access memory (RRAM) device with aluminum (Al) top and indium tin oxide (ITO) bottom electrodes.
View Article and Find Full Text PDFTime-of-flight-based two-dimensional and three-dimensional light detection and ranging (LiDAR) applications have recently been implemented in several industries because of their high-precision measuring capabilities over long distances in outdoor environments. Avalanche photodetectors (APDs) are commonly used for LiDARs because of their high internal gain that significantly amplifies a measured signal. However, the magnitude of the measured signal changes significantly with temperature variations, owing to the temperature dependent characteristics of the APD.
View Article and Find Full Text PDFTo utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work.
View Article and Find Full Text PDFIn the continuous-wave time-of-flight method, the distance traveled by light can be obtained by using the phase difference between the reference signal and the measured signal. However, when the phase difference exceeds 2π, the distance cannot be differentiated because the distance variation repeats every 2π period. In this paper, we propose a method in which low- and high-frequency signals are separately applied to two laser diodes simultaneously, and processed using two different signal processing circuits to solve the 2π ambiguity problem and achieve a high distance resolution for a longer distance measurement.
View Article and Find Full Text PDFIn the phase-shift measurement method, the distance traveled by light can be obtained on the basis of the phase difference between the reference signal and the measured signal. When a different colored object is measured, the intensity of the measured signal varies greatly, even at the same distance, which causes a different phase delay owing to the wide dynamic range input into the signal processing circuit. In this study, an intensity control method is proposed to solve this phase delay problem.
View Article and Find Full Text PDF