Publications by authors named "Junhui Zeng"

Circular RNAs (circRNAs) are generally formed by the back-splicing of precursor mRNA. Increasing evidence implicates the important role of circRNAs in cardiovascular diseases. However, the role of circ-insulin-like growth factor 1 receptor () in cardiomyocyte (CM) proliferation remains unclear.

View Article and Find Full Text PDF

Dysregulated epigenetic and transcriptional programming due to abnormalities of transcription factors (TFs) contributes to and sustains the oncogenicity of cancer cells. Here, we unveiled the role of zinc finger protein 280C (ZNF280C), a known DNA damage response protein, as a tumorigenic TF in colorectal cancer (CRC), required for colitis-associated carcinogenesis and Apc deficiency–driven intestinal tumorigenesis in mice. Consistently, ZNF280C silencing in human CRC cells inhibited proliferation, clonogenicity, migration, xenograft growth, and liver metastasis.

View Article and Find Full Text PDF

Tumor-initiating cells (TICs) maintain heterogeneity within tumors and seed metastases at distant sites, contributing to therapeutic resistance and disease recurrence. In colorectal cancer (CRC), strategy that effectively eradicates TICs and is of potential value for clinical use still remains in need. : The anti-tumorigenic activity of a small-molecule inhibitor of KDM6 histone demethylases named GSK-J4 in CRC was evaluated by assays and imaging of xenografted tumors.

View Article and Find Full Text PDF

Aberrant activation of Homeobox genes in human cancers has long been documented, whereas the mechanisms underlying remain largely obscure. Super-enhancers (SEs) act as key regulatory elements for both cell identity genes and cancer genes. Herein, we reported that SE-associated HOXB gene cluster represented a common feature of colorectal cancer (CRC) cell lines and multiple HOXB genes within this cluster were overexpressed in CRC.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that tau hyperphosphorylation leads to neurodegeneration of retinal ganglion cells (RGCs), potentially marking an early stage of diabetic retinopathy (DR).
  • A study found that applying ginsenoside Rg1 (GRg1), a key ingredient from certain plants, reduced tau-induced neurodegeneration in a diabetic mouse model.
  • The protective effects of GRg1 were shown to work through the IRS-1/Akt/GSK3β signaling pathway, highlighting its potential as a therapeutic agent for addressing neurodegeneration in DR.
View Article and Find Full Text PDF

Diabetic retinal neurodegeneration, in particular synaptic neurodegeneration of retinal ganglion cells (RGCs) occurring before RGCs apoptosis, may represent the earliest event in the pathogenesis of diabetic retinopathy (DR). Our previous study identified hyperphosphorylated-tau as a critical toxic mediator in diabetic RGCs synaptic neurodegeneration. Thus, therapeutic agents targeting to tau may appear as a promising strategy to arrest the progression of DR.

View Article and Find Full Text PDF

In order to identify a more efficient biosorbent for (137)Cs, we have investigated the biosorption behavior and mechanism of (137)Cs on Rhodosporidium fluviale (R. fluviale) strain UA2, one of the dominant species of a fungal group isolated from a stable cesium solution. We observed that the biosorption of (137)Cs on R.

View Article and Find Full Text PDF

In this paper, the adsorption and desorption behavior of uranium (VI) in aerated zone soil (from Southwest China) was systematically investigated using a static experimental method in order to provide useful information for safety assessment of the disposal of (ultra-)low uraniferous radioactive waste, as well as a potential remediation method for uranium-contaminated soils. The adsorption behavior of uranium (VI) was firstly studied by batch experiments as functions of contact time, pH, liquid/solid ratio, temperature, colloids, minerals and coexistent ions. The results indicated that the adsorption of uranium (VI) by natural soil was efficient at an initial concentration of 10 mg/L uranium (VI) nitrate solution with 100 mg natural soil at room temperature when pH is about 7.

View Article and Find Full Text PDF