Publications by authors named "Junhua Hou"

Biomedical alloys are paramount materials in biomedical applications, particularly in crafting biological artificial replacements. In traditional biomedical alloys, a significant challenge is simultaneously achieving an ultra-low Young's modulus, excellent biocompatibility, and acceptable ductility. A multi-component body-centered cubic (BCC) biomedical high-entropy alloy (Bio-HEA), which is composed of non-toxic elements, is noteworthy for its outstanding biocompatibility and compositional tuning capabilities.

View Article and Find Full Text PDF

A metal-free carbon catalyst is a kind of oxygen reduction catalyst with great prospects. It is an important material with potential to replace the traditional Pt catalyst. In this paper, a kind of irregular and ultra-thin carbon nanosheet (K180M-300-900) with high catalytic activity was synthesized by hydrothermal calcination using okra as a biomass and NHCl as an N source.

View Article and Find Full Text PDF

The slow formation of anammox biofilms presents a bottleneck for resolving anammox bacterial loss and achieving stable performance in biofilm-based partial denitrification-anammox (PD-A) processes. This study utilized iron-modified (K1/FeO NPs) carriers, which were prepared and used for the first time in PD-A processes. Parallel moving bed biofilm reactors (MBBRs) indicated that iron-modified carriers facilitated the formation of biofilms at a faster rate than K1 carriers, consequently improving the nitrogen removal performance of the process by over 40 %.

View Article and Find Full Text PDF

Uniform tensile ductility (UTD) is crucial for the forming/machining capabilities of structural materials. Normally, planar-slip induced narrow deformation bands localize the plastic strains and hence hamper UTD, particularly in body-centred-cubic (bcc) multi-principal element high-entropy alloys (HEAs), which generally exhibit early necking (UTD < 5%). Here we demonstrate a strategy to tailor the planar-slip bands in a Ti-Zr-V-Nb-Al bcc HEA, achieving a 25% UTD together with nearly 50% elongation-to-failure (approaching a ductile elemental metal), while offering gigapascal yield strength.

View Article and Find Full Text PDF

The development of inexpensive and efficient electrocatalysts for oxygen reduction reactions (ORR) remains a challenge with respect to renewable energy technologies. In this research, a porous, nitrogen-doped ORR catalyst is prepared using the hydrothermal method and pyrolysis with walnut shell as a biomass precursor and urea as a nitrogen source. Unlike past research, in this study, urea is not directly doped; instead, a new type of doping is carried out after annealing at 550 °C.

View Article and Find Full Text PDF

The synthesis of metal-free carbon-based electrocatalysts for oxygen reduction reactions (ORR) to replace conventional Pt-based catalysts has become a hot spot in current research. This work proposes an activation-assisted carbonization strategy, to manufacture N-doped ultra-thin carbon nanosheets (GWS180M800) with high catalytic activity, namely, melamine is used as an accelerator/nitrogen source, and walnut green peels biological waste as a carbon source. The melamine acts as a nitrogen donor in the hydrothermal process, effectively enhancing the nitrogen doping rate.

View Article and Find Full Text PDF

Designing oxygen reduction reaction (ORR) catalysts with excellent performance has far-reaching significance. In this work, a high-activity biomass free-metal carbon catalyst with N and S co-doped was successfully prepared by using the KOH activated awn stem powder as the precursor with organic matter pore-forming doping technology, which is named TAAS. The content of pyridine nitrogen groups accounts for up to 36% of the total nitrogen content, and a rich pore structure is formed on the surface and inside, which are considered as the potential active centers of ORR.

View Article and Find Full Text PDF

Microplastics (MPs) alter soil aggregation stability. However, studies have yet to determine whether these alterations further affect microbial community structures and diversities within different soil aggregates and whether they influence the responses of soil microbial structures and diversities to MPs in different aggregate fractions. In this study, long-term soil incubation experiments and soil fractionation were combined to investigate the effects of polyethylene microplastics (PE-MPs) on soil aggregate properties and microbial communities in soil aggregates with different particle sizes.

View Article and Find Full Text PDF

Microplastics (MPs), as a new type of environmental pollutant, pose a serious threat to soil ecosystems. The activities of soil extracellular enzymes produced by microorganisms are the potential sensitive indicators of soil quality. However, little is known about the response mechanism of enzyme activities toward MPs on a long-term scale.

View Article and Find Full Text PDF

With the development of the environment and human society, the removal of metal ions and dyes in wastewater treatment remains an urgent problem to solve. In this work, two biomass carbon adsorbents were synthesized by a KOH activation and carbonization route using sorghum stem and root as carbon precursors. In comparison with the samples without KOH activation, the pore structure of the KOH-activated carbon has been dramatically improved.

View Article and Find Full Text PDF

Microplastics can alter the physicochemical and biogeochemical processes in soil, but whether these alterations have further the effects on the transformation of soil heavy metal speciation, and if so, whether these effects vary across soil aggregate levels remain unknown. Herein, long-term soil culture experiments and soil fractionation are combined to investigate the effects of microplastics on chemical speciation of Cu, Cr, and Ni with different particle-size soil aggregates. Results show that microplastics in soil decrease the exchangeable, carbonate-bound, and Fe-Mn oxide-bound fractions of metals but increase their organic-bound fractions via direct adsorption and indirect effects on the soil microenvironment conditions.

View Article and Find Full Text PDF

In this study, ball-milled powder of Ti and Al was used to fabricate Ti-Al intermetallic compound-reinforced Al matrix composites by an in-situ reaction in cold-pressing sintering and hot-pressing sintering processes. The detailed microstructure of the Ti-Al intermetallic compound-reinforced Al composite was characterized by optical microscopy (OM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), and electron backscattered diffraction (EBSD). The results indicate that a typical core-shell-like structure forms in the reinforced particles.

View Article and Find Full Text PDF

Conclusion: This study shows that cochlear implantation is relatively safe surgery with few major complications and within acceptable limits. However, close follow-up observation and effective medical and nursing intervention could alleviate further complications and thus become key elements for promoting recovery of patients undergoing such surgery.

Objectives: Cochlear implantation has become an effective method for curing patients disabled by profound hearing loss in China.

View Article and Find Full Text PDF