Spectrochim Acta A Mol Biomol Spectrosc
January 2024
A fluorescent probe CTP2-IMC was designed for bioimaging of glutathione (GSH) in cancer cells with indomethacin (IMC), coumarin and bromide as the targeting group, fluorophore and receptor, respectively. Due to the π-π interaction between coumarin and IMC, CTP2-IMC mainly exists in the form of folded state in aqueous solution. The non-radiative transitions caused by the photo-induced electron transfer (PET) process from IMC to the fluorophore as well as the heavy-atom effect led to non-fluorescent of CTP2-IMC.
View Article and Find Full Text PDFOptical sparse-aperture systems face severe challenges, including detecting and correcting co-phase errors. In this study, a search framework based on fine tuning a pre-trained network is proposed to analyze the co-phase errors of a Golay3 telescope system. Based on this, an error compensation control system is established.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
October 2023
Two fluorescent sensors with the receptor semicarbazide respectively at 7- (CAA) and 3-position (CAB) of coumarin were designed and synthesized. CAA exhibits fluorescence turn-on response to Cu by triggering the intramolecular charge transfer (ICT) process via Cu-catalyzed hydrolysis, and can detect formaldehyde (FA) at different channel by inhibiting the photo-induced electron transfer (PET). However, CAB displays quite different responses: the photophysical properties hardly changed in the presence of FA; while a three-stage fluorescence response of fast quenching, steady increasing and slowly decreasing was found upon addition of Cu.
View Article and Find Full Text PDFFive fluorescent probes TP1-5 were demonstrated as two-input "AND" molecular logic gates for the detection of thiols and protons. The molecules were designed based on "thiol receptor-spacer-fluorophore-spacer-proton receptor" mode. The logic gates were constructed by employing maleimide, naphthalimide and morpholine (TP1-3)/-methyl piperazine (TP4-5) as the thiol receptor, fluorophore and proton receptor, respectively.
View Article and Find Full Text PDFIn order to improve the alignment accuracy of a Cassegrain system, to the best of our knowledge, a novel computer-aided alignment method based on torque sensitivity is proposed. Different from the traditional position sensitivity curve guiding scheme, the accurate position of the secondary mirror is not necessary while the torque sensitivity curve is generated. By establishing the relationship between the torque of the secondary mirror setting screw and the Zernike coefficients of the system, a practical quantitative alignment scheme for the Cassegrain system can be realized.
View Article and Find Full Text PDFFour indomethacin-naphthalimide binaries with different proton receptors at 4-position of naphthalimide were designed and synthesized. N,N-Dimethylethylenediamine and N-methyl piperazine were served as proton receptors as well as solubility regulators. Indomethacin, an inhibitor for cyclooxygenase-2 overexpressed on cancer cells, was connected at the imine N through different spacers.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2020
Two fluorescent probes were designed by connecting indomethacin to coumarin through different linkers. The introduction of indomethacin quenched the fluorescence of coumarin-based probes with apparent red-shifts in the absorption and emission maxima, probably due to the photoinduced electron transfer (PET) from the indomethacin to the fluorophore and the formation of folding conformation. The addition of human serum albumin (HSA) triggered about 40-fold fluorescence enhancements of ADC-IMC-2 and ADC-IMC-6 with 85 nm blue-shifts.
View Article and Find Full Text PDFWe designed and synthesized cinchona alkaloid derivates PMI-BnCPD, 1 and PMI-dHQD, 2, in which a fluorescent perylene monoimide unit is linked to the quinuclidine fragment. The latter acts as an electron donor, quenching the perylene imide fluorescence in polar solvents. In the organocatalytic application of these compounds, the electron donor is deactivated by binding to an electrophile, e.
View Article and Find Full Text PDFA near infrared fluorescent probe YSP for sulfite was synthesized, in which a julolidine fused with a pyran-2-one was employed as the fluorophore and the vinyl activated by an indole salt as the receptor. The introduction of julolidine and indole salt strengthens the electron push-pull effect of the probe and allows it to absorb (597 nm) and emit (681 nm) in red wavelength region. The addition of sulfite to the C˭C bond led to prominent blue-shifts in both absorption (171 nm) and emission (165 nm) spectra, which made it possible for colorimetric and ratiometric fluorescent detection of sulfite.
View Article and Find Full Text PDFA spectroscopic study of an organocatalytic Henry reaction between nitroalkanes and aldehydes catalyzed by a quinidine-derived alkaloid is described. The binding modes of the reaction substrates are investigated using electronic absorption and fluorescence spectroscopy and further corroborated by nuclear magnetic resonance measurements. Aldehydes are shown to associate with both the 6'-OH group and the basic quinuclidine nitrogen of the catalyst, whereas nitroalkanes do not exhibit a clear binding mode.
View Article and Find Full Text PDFA fluorescence "off-on" probe CBF, constructed by incorporating a dioxaborine unit into a microenvironment-sensitive fluorophore, was developed for serum albumin (SA). Upon binding to SA, the dioxaborine group in CBF was hydrolyzed into β-diketonate, which triggered dramatic fluorescence enhancement (over 1000-fold) along with a remarkable blue-shift (∼100 nm). The bioimaging results suggested that more SA were taken in by cancer cells.
View Article and Find Full Text PDFA fluorescence "off-on" probe CMP for thiols was designed with coumarin as the fluorophore and maleimide as the receptor. The fluorescence of the coumarin was quenched through photoinduced electron transfer (PET) from the fluorophore to maleimide group. The Michael addition of the mercapto group toward maleimide formed a thioether with relatively weak fluorescence.
View Article and Find Full Text PDFA new fluorescent probe 7-(diethylamino)-3-((1e,3e)-5-oxo-5-phenylpenta-1,3-dien-1-yl)-2H-chromen-2-one (SPH), based on Michael addition mechanism, was designed and synthesized for selective detection of sulfite. The probe was constructed by incorporating an α,β-unsaturated ketone conjugated with a C˭C bond into the coumarin fluorophore as a specifical reaction site for sulfite utilizing its nucleophilic property. The extra conjugated C˭C bond induced obvious red-shifts in both absorption and emission maxima, and remarkably promoted the nucleophilic addition rate.
View Article and Find Full Text PDFSulfhydryl-containing proteins play critical roles in various physiological and biological processes, and the activities of those proteins have been reported to be susceptible to thiol oxidation. Therefore, the development of protein thiol target fluorescent probe is highly desirable. In the present work, a biotinylated coumarin fluorescence "off-on" probe SQ for selectively detecting protein thiols in biotin receptor-positive cancer cells was designed with a 2,4-dinitrobenzenesulfony as the thiol receptor.
View Article and Find Full Text PDFIn regard to the phosphoproteome, highly specific and efficient capture of heteroideous kinds of phosphopeptides from intricate biological sample attaches great significance to comprehensive and in-depth phosphorylated proteomics research. However, until now, it has been a challenge. In this study, a new-fashioned porous immobilized metal ion affinity chromatography (IMAC) material was designed and fabricated to promote the selectivity and detection limit for phosphopeptides by covering a metal-organic frameworks (MOFs) shell onto Fe3O4 nanoparticles, taking advantage of layer-by-layer method (the synthesized nanoparticle denoted as Fe3O4@MIL-100 (Fe)).
View Article and Find Full Text PDFTwo biotinylated coumarin-based fluorescent probes SPS3 and RC3 were designed for differentiating between structurally similar proteins streptavidin (SA) and avidin (AV). A substituted phenyl group is introduced onto SPS3, which may quench the fluorescence through twist intramolecular charge transfer (TICT). The fluorescence of SPS3 is turned on, by restraining the TICT process, when the fluorophore is buried at the surface of SA.
View Article and Find Full Text PDFThree fluorescent probes TP1–3 for thiols were rationally designed and synthesized to distinguish cysteine (Cys) from glutathione (GSH)/homocysteine (Hcy). TP1–3 are almost non-fluorescent and colorless 4-nitro-1,8-naphthalimide derivatives. Upon the substitution of nitro by Cys, TP1–3 were transformed into weakly fluorescent green-emitting 4-amino analogs via highly fluorescent blue-emitting thioether intermediates.
View Article and Find Full Text PDFTwo fluorescent probes, m-PSP and p-PSP , for sulfite and/or sulfide were constructed by connecting a pyridinium ion to a coumarin fluorophore through an α,β-unsaturated ketone. The presence of the pyridinium salt promoted the nucleophilic addition of sulfite and sulfide to the α,β-unsaturated ketone, which could be visualized by dramatic changes in the solution's color and fluorescence intensity. Both probes exhibit good selectivity (the selectivity coefficients toward major interferences are less than 0.
View Article and Find Full Text PDFTwo fluorescent probes SPS1 and SPS2 were designed by connecting biotin to an environment-sensitive coumarin fluorophore. Streptavidin and avidin induced dramatical fluorescence changes in both probes. SPS2 has potential in fluorescent imaging of biotin receptor-enriched tumor cells.
View Article and Find Full Text PDFSulfite and sulfide share several similarities in terms of chemical properties, such as nucleophilic and reducing reactivities. Therefore, they may disturb the detection of each other. In order to discriminate between these two kinds of sulfur-containing species, a new probe -N3 was developed, in which para-azidobenzenyl ketone was covalently incorporated to a coumarin fluorophore linked by a C=C double bond.
View Article and Find Full Text PDFBased on the semipermeability of hollow fiber membranes, a post-column membrane reactor was developed for capillary electrophoresis (CE)-laser induced fluorescence (LIF) analysis of proteins by using a hollow fiber membrane to connect the separation and detection capillaries. The membrane length between the separation and detection capillaries was 1 mm. Driven by the chemical potential difference between the separation buffer inside the membrane and the fluorescence derivatization solution outside the membrane, the derivatization reagent can be easily drawn into hollow fiber membrane to react with proteins.
View Article and Find Full Text PDFThree fluorescent probes were constructed by incorporating an α,β-unsaturated ketone to a coumarin fluorophore. The selective addition of sulfite to the alkene of TSP assisted by cetyltrimethyl ammonium bromide (CTAB) micelle can be visualized by dramatic color and ratiometric fluorescence changes. In CTAB-PBS system, the fluorescence intensity ratio at 465 nm and 592 nm (I465/I592) and the absorbance ratio at 390 nm and 470 nm (A390/A470) were linearly proportional to sulfite concentration in the range of 0.
View Article and Find Full Text PDFNovel open-tubular capillary electrochromatography (OT-CEC) systems with core/shell magnetic nanoparticles modified by amino or C18 groups as stationary phase were constructed by immobilizing nanoparticles in the capillary with permanent magnets. Influence of preparation method of OT-CEC column with series stationary phases (continuous two-dimension) on column performance and effect of dispersant on capability of OT-CEC column prepared by stationary phases with mixed functionalities (mixed stationary phases) were investigated in details to achieve stable preparation. Organic acids were used to evaluate the OT-CEC systems, and the relative column efficiency of salicylic acid was 420,000 plates/m for series stationary phases, while that of benzoic acid reached 480,000 plates/m for mixed stationary phases.
View Article and Find Full Text PDFIn this paper, two colorimetric and turn-on fluorescent probes N-[2-(2-hydroxy)-ethoxy] ethyl-4-azido-1,8-naphthalimide (SS1) and N-butyl-4-azido-1,8-naphthalimide (SS2) for selective recognition of H2S were designed and synthesized. The probes were constructed by incorporating an azido group into the naphthalimide fluorophore as a specifical reaction group for sulfide utilizing its reducing property. Once treated with H2S, the azido groups of the probes were converted to amino groups and the solutions' color changed from colorless to yellow companied with a strong yellow-green fluorescence.
View Article and Find Full Text PDFA continuous 2D ion exchange/RP CEC system was constructed in this report and retention characteristics of weak monoprotic acids in the column were investigated theoretically. The transport equations were deduced for predicting migration behavior of weak monoportic acids based on mixing model combining ion exchange, RP, and electrophoretic separation mechanism. The influences of separation voltage, length of capillary, pH value, and ionic strength of buffer and concentration of organic modifier in mobile phase on the separation were well described by the equations.
View Article and Find Full Text PDF