Publications by authors named "Junhong Luo"

The construction, use, and maintenance of tritium-related equipment will inevitably produce tritium-containing radioactive waste gas, and the production of efficient catalysts for tritium removal remains a difficult problem. Herein, silicalite-1 zeolite with entrapped Pt nanoclusters is skillfully post-oxidized at an appropriate temperature, building highly active Pt─O sites on the nanoclusters to achieve efficient oxidation of hydrogen isotopes at low temperatures. The designed Pt─O sites can directly participate in the oxidation reaction of hydrogen isotopes.

View Article and Find Full Text PDF

Highly efficient removal of low concentrations of hydrogen isotope gas in air is crucial for the safe operation of nuclear energy plants. Herein, silicalite-1-confined Pt cluster catalysts were used for the catalytic oxidation of hydrogen isotopes, and the related catalytic mechanism was revealed. Increased temperature in direct hydrogen reduction treatment slightly increased the size of Pt clusters from 1.

View Article and Find Full Text PDF

Chronic cerebral hypoperfusion (CCH) is an enduring inadequate blood flow to the brain, resulting in vascular dementia (VaD). However, the effective treatment strategies are lacking. Supplementing with nicotinamide adenine dinucleotide (NAD) has shown neuroprotective benefits in other neurodegenerative disorders.

View Article and Find Full Text PDF

Whole genome sequencing provides rapid insight into key information about the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), such as virus typing and key mutation site, and this information is important for precise prevention, control and tracing of coronavirus disease 2019 (COVID-19) outbreak in conjunction with the epidemiological information of the case. Nanopore sequencing is widely used around the world for its short sample-to-result time, simple experimental operation and long sequencing reads. However, because nanopore sequencing is a relatively new sequencing technology, many researchers still have doubts about its accuracy.

View Article and Find Full Text PDF

Understanding maturation pathways of broadly neutralizing antibodies (bnAbs) against HIV-1 can be highly informative for HIV-1 vaccine development. A lineage of J038 bnAbs is now obtained from a long-term SHIV-infected macaque. J038 neutralizes 54% of global circulating HIV-1 strains.

View Article and Find Full Text PDF

A high-efficient and low-cost catalyst on hydrogen isotope separation between hydrogen and water is an essential factor in industrial application for heavy water production and water detritiation. In past studies, Pt-based catalysts were developed but not practical for commercial use due to their high cost for vapor phase catalytic exchange (VPCE), while for impregnated nickel catalysts with a lower cost the problems of agglomeration and low Ni utilization existed. Therefore, to solve these problems, in-situ grown Ni-based catalysts (NiAl-LDO) derived from a layered double hydroxide (LDH) precursor were fabricated and first applied in VPCE in this work.

View Article and Find Full Text PDF

Hydrophobic surfaces were successfully fabricated on pure nickel substrates by a one-step chemical etching process with different acidic solutions. The static water contact angle (SCA) of the etched Ni surfaces reached higher than 125°, showing excellent hydrophobicity. The examination of surface chemical compositions implied that there were almost no polar moieties on the surface after chemical etching, except part of the surface was oxidized.

View Article and Find Full Text PDF

Humidity sensors are a common, but important type of sensors in our daily life and industrial processing. Graphene and graphene-based materials have shown great potential for detecting humidity due to their ultrahigh specific surface areas, extremely high electron mobility at room temperature, and low electrical noise due to the quality of its crystal lattice and its very high electrical conductivity. However, there are still no specific reviews on the progresses of graphene-based humidity sensors.

View Article and Find Full Text PDF

Hydrogen release from ammonia borane (NH(3)BH(3), AB) can be greatly promoted by mechanical milling with magnesium nitride (Mg(3)N(2)). For example, a post-milled 6AB/Mg(3)N(2) sample started to release hydrogen from ∼65 °C and gave a material-based hydrogen capacity of ∼11 wt% upon heating to 300 °C. In addition to the improved dehydrogenation kinetics, the 6AB/Mg(3)N(2) sample also showed satisfactory performance in suppressing the volatile byproducts.

View Article and Find Full Text PDF

The recent mechanistic finding of the hydrogen release pathways from ammonia borane (AB) has sparked new interest in the chemistry and properties of the diammoniate of diborane (DADB), an ionic isomer of AB. We herein report a facile one-step solid-phase synthesis route of DADB using inexpensive starting materials. Our study found that mechanically milling a 1 : 1 NaBH(4)/NH(4)F powder mixture causes the formation of crystalline DADB via a NH(4)BH(4) intermediate.

View Article and Find Full Text PDF

As a consequence of the combination of the formation and decomposition reactions of NaMg(NH(2)BH(3))(3), the 3NH(3)BH(3)/NaMgH(3) mixture can rapidly release ca. 10 wt.% of hydrogen at 80 °C within 2 min.

View Article and Find Full Text PDF

Our previous study found that mechanically milling with magnesium hydride (MgH(2)) could dramatically improve the dehydrogenation property of ammonia borane (AB). Meanwhile, it appears that the MgH(2) additive maintains its phase stability in the milling and subsequent heating process. In an effort to further the mechanistic understanding of the AB/MgH(2) system, we reinvestigated the property and structure evolution in the hydrogen release process of the AB/0.

View Article and Find Full Text PDF

Ammonia borane (NH(3)BH(3), AB) is an intriguing molecular crystal with an extremely high hydrogen capacity and moderate thermal stability. In the present study, we show a simple but effective approach for destabilizing AB for promoted hydrogen release at moderate temperatures. It is found that mechanically milling with magnesium hydride (MgH(2)) can dramatically improve the dehydrogenation properties of AB, on both the kinetic and thermochemical aspects.

View Article and Find Full Text PDF

We have adapted the Location Database (LDB) map-integration strategy of Morton et al. [Ann Hum Genet 56:223-232] (1992) as above to create an integrated map for each of several species for which fully annotated genome sequences are not yet available (sheep, cattle, pig, wallaby), using all types of partial maps for that species, including cytogenetic, linkage, somatic-cell hybrid, and radiation hybrid maps. An integrated map provides not only predictions of the kilobase location of every locus, but also predicts locations (in cM) and cytogenetic band locations for every locus.

View Article and Find Full Text PDF