Cadmium(Cd) contamination can exert significantly adverse effects on soil microbiota in reclaimed areas, however, its effects on bacterial network structure are still limitedly understood. Here we collected soil samples from typical reclaimed wetlands (RW) and ditch wetlands (DW) in coastal reclamation areas and examined the effects of Cd contamination on the bacterial network complexity and stability. The results showed that the bacterial networks were destabilized by the Cd contamination, while bacteria in DW soils showed robust invulnerability characterized by higher node constancy and compositional stability compared with RW soils.
View Article and Find Full Text PDFPlanting has been widely adopted to battle the loss of salt marshes and to establish living shorelines. However, the drivers of success in salt marsh planting and their ecological effects are poorly understood at the global scale. Here, we assemble a global database, encompassing 22,074 observations reported in 210 studies, to examine the drivers and impacts of salt marsh planting.
View Article and Find Full Text PDFN-cycling processes mediated by microorganisms are directly linked to the eutrophication of lakes and ecosystem health. Exploring the variation and influencing factors of N-cycling-related genes is of great significance for controlling the eutrophication of lakes. However, seasonal dynamics of genomic information encoding nitrogen (N) cycling in sediments of eutrophic lakes have not yet been clearly addressed.
View Article and Find Full Text PDFEcological water replenishment is a crucial and effective measure to improve the water quality and ecological function of lakes. However, the effects of ecological water replenishment on the pollution characteristics and ecological risks of trace elements and bacterial communities in lake surface water are still kept unclear. We investigated the pollution levels and potential ecological risks for trace elements, as well as variation of the bacterial community in surface water in the BYD lake before and after ecological water replenishment.
View Article and Find Full Text PDFDespite the serious health threats due to wide use of organophosphorus pesticides (OPPs) have been experimentally claimed to be remediated by probiotic microorganisms in various food and organism models, the interactions between OPPs and probiotics in the natural wetland ecosystem was rarely investigated. This study delves into the spatial and temporal distribution, contamination levels of OPPs in the Baiyangdian region, the diversity of probiotic communities in varying environmental contexts, and the potential connection with OPPs on these probiotics. In typical shallow lake wetland ecosystem-Baiyangdian lake in north China, eight OPPs were identified in the lake sediments, even though their detection rates were generally low.
View Article and Find Full Text PDFAlthough the combined pollution of trace elements and antibiotics has received extensive attention, the fate and toxicity risk of trace elements with high antibiotic risk are still unclear. The multimedia distributions, partitioning, sources, toxicity risks and co-occurrence network characteristics of trace elements in surface water (SW), overlying water (OW), pore water (PW) and sediment (Sedi) samples of 61 sites from Baiyangdian (BYD) Lake were investigated. The trace elements in the SW and OW are derived mainly from traffic and agricultural sources, and those in PW and Sedi samples are primarily from lithogenic and industrial sources.
View Article and Find Full Text PDFIncreasing concerns about public health and safety after covid-19 have raised pathogen studies, especially in aquatic environments. However, the extent to how different location and human activities affect geographic occurrence and distribution of pathogens in response to agricultural pollution, boat tourism disturbances and municipal wastewater inflow in a degraded lake remains unclear. Since the surrounding residents depend on the lake for their livelihood, understanding the pathogens reserved in lake sediment and the regulation possibility by environmental factors are challenges with far-reaching significance.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2023
The urgent need to address the severe issue of nitrogen pollution has prompted the search for a functional and easy recycling material. In this study, manganese oxides (MnO) were loaded on activated carbon (AC), resulting in a composite known as AC-MnO, for efficient ammonium removal from aqueous solutions. The results indicated a remarkable 15.
View Article and Find Full Text PDFBackground: Soil salinization threatens food security and ecosystem health, and is one of the important drivers to the degradation of many ecosystems around the world. Soil microorganisms have extremely high diversity and participate in a variety of key ecological processes. They are important guarantees for soil health and sustainable ecosystem development.
View Article and Find Full Text PDFAntibiotics are ubiquitous pollutants that are widely found in aquatic ecosystems, where the bacterial community of aquatic plants is influenced by antibiotics. However, differences between endophyte and phyllosphere bacteria of Lotus from above and below surface water remains unclear. Lotus samples from above and below the surface water were collected to investigate the differences in endophyte and phyllosphere bacteria and dominant environmental factors in regions with low (L-) and high (H-) total antibiotic levels.
View Article and Find Full Text PDFAntibiotics are widely found in aquatic ecosystems and pose a serious threat to human and the ecological system. Samples of surface water (SW), overlying water (OW), pore water (PW) and sediments (Sedi) were collected to investigate the spatial variability, potential sources, ecological risk (RQs) and health risks (HQs) of nine common antibiotics in Baiyangdian Lake using positive matrix factorization (PMF), and Monte Carlo simulation. Significant spatial autocorrelation of most antibiotics were observed in PW and Sedi samples rather than in SW and OW samples, and higher antibiotic levels were found in the northwest of waters and the southwest of sediments.
View Article and Find Full Text PDFUnderstanding the spatiotemporal landscape dynamics and spread pathways of invasive plants, as well as their interactions with geomorphic landscape features, are of great importance for predicting and managing their future range-expansion in non-native habitats. Although previous studies have linked geomorphic landscape features such as tidal channels to plant invasions, the potential mechanisms and critical characteristics of tidal channels that affect the landward invasion by Spartina alterniflora, an aggressive plant in global coastal wetlands, remain unclear. Here, using high-resolution remote-sensing images of the Yellow River Delta from 2013 to 2020, we first quantified the evolution of tidal channel networks by analyzing the spatiotemporal dynamics of their structural and functional characteristics.
View Article and Find Full Text PDFThe migration of antibiotics and bacterial communities between sediments and pore water occurring in the lake, which is affected by aquatic vegetation. However, the differences in bacterial community structure and biodiversity between pore water and sediments with plants in lakes under antibiotic stress are still poorly understood. We collected pore water and sediments in both wild and cultivated regions in the Zaozhadian (ZZD) Lake to explore the characteristics of the bacterial community.
View Article and Find Full Text PDFSalinity stress is one of the critical environmental drivers of soil organic matter (SOM) decomposition in coastal ecosystems. Although the temperature sensitivity (Q) of SOM decomposition has been widely applied in Earth system models to forecast carbon processes, the impact of salinity on SOM decomposition by restructuring microbial communities remains uncovered. Here, we conducted a microcosm experiment with soils collected from the coastal salt marsh in the Yellow River Estuary, which is subjected to strong dynamics of salinity due to both tidal flooding and drainage.
View Article and Find Full Text PDFLake Villarrica, one of Chile's main freshwater water bodies, was recently declared a nutrient-saturated lake due to increased phosphorus (P) and nitrogen (N) levels. Although a decontamination plan based on environmental parameters is being established, it does not consider microbial parameters. Here, we conducted high-throughput DNA sequencing and quantitative polymerase chain reaction (qPCR) analyses to reveal the structure and functional properties of bacterial communities in surface sediments collected from sites with contrasting anthropogenic pressures in Lake Villarrica.
View Article and Find Full Text PDFFreshwater ecosystems are gradually becoming sinks for terrestrial microplastics (MPs), posing a potential ecological risk. Although the effects of MPs on plankton and aquatic animals in freshwater ecosystems have been given increasing attention, the toxicity of MPs to the metabolism of aquatic plants remains unclear. Here, the model aquatic plant Spirodela polyrhiza (L.
View Article and Find Full Text PDFIntroduction: As the largest shallow freshwater lake in the North China Plain, Baiyangdian lake is essential for maintaining ecosystem functioning in this highly populated region. Sediments are considered to record the impacts of human activities.
Methods: The abundance, diversity and metabolic pathways of microbial communities in sediments were studied by metagenomic approach to reveal patterns and mechanism of C, N, P and S cycling under the threat of lake eutrophication.
Understanding the mechanisms by which the geomorphic structures affect habitat invasibility by mediating various abiotic and biotic factors is essential for predicting whether these geomorphic structures may provide spatial windows of opportunity to facilitate range-expansion of invasive species in salt marshes. Many studies have linked geomorphic landscape features such as tidal channels to invasion by exotic plants, but the role of tidal channel meanders (i.e.
View Article and Find Full Text PDFRhizosphere microorganisms and their interactions with plants in wetlands have recently attracted much attention due to their importance in enhancing plant environmental adaptation, removing wetland pollutants, and alleviating climate change. However, the fluctuating hydrological environment of wetlands leads to more complex dynamics in the rhizosphere environment. Research progress and hotspots concerning plant-rhizosphere microorganisms under special wetland environments are still kept unclear.
View Article and Find Full Text PDFPlant invasion profoundly changes the microbial-driven processes in the ecosystem; however, the seasonality of soil microbial communities and their assembly under plant invasion is poorly understood. In this study, coastal salt marshes with native Suaeda salsa (L.) Pall.
View Article and Find Full Text PDFGlyphosate is a widely used herbicide worldwide and its prevalent presence in aquatic ecosystems poses a threat to living organisms. This study evaluated potential ecological risk of glyphosate to sediment-dwelling organisms and assessed the probable effect of glyphosate on structure and predicated function of sediment-attached bacterial communities from a large shallow lake in northern China based on 16S rRNA high-throughput sequencing. Results suggested that glyphosate showed a medium to high concentration (up to 8.
View Article and Find Full Text PDFIntroduction: Antibiotics are ubiquitous pollutants and widely found in aquatic ecosystems, which of rhizosphere sediment and rhizosphere bacterial communities had certain correlation. However, the response of bacterial communities in rhizosphere and non-rhizosphere sediments to antibiotics stress is still poorly understood.
Methods: To address this knowledge gap, the samples of rhizosphere (R) and non-rhizosphere (NR) sediments of .
J Environ Manage
February 2023
River stage fluctuation (RSF) induced by tides, dam releases, or storms may lead to enhanced nitrogen cycling (N cycling) in riparian zones (RZ). We conducted a laboratory water table manipulation experiment and applied a multiphase flow and transport model (TOUGHREACT) to investigate the role of RSF in N cycling in the RZ. Coupled nitrification and denitrification occur in the water table fluctuation zone under alternating aerobic and anaerobic conditions.
View Article and Find Full Text PDFCoastal wetlands have been enclosed by thousands of kilometers of seawalls in China to obtain extra land for rapid socio-economic development in the coastal region. Although understanding seawall-induced impacts on delta wetlands and their ecosystem can provide valuable decision-making information to support coastal management, quantifying and measuring long-term, cumulative ecological impacts of harden seawall under sea level rise (SLR) remains a vital research gap. In this study, by combining the land-use transformation trajectory analysis, ecosystem services assessment, and the SLAMM (Sea Level Affecting Marshes Model), we have explored the seawall-induced effects on temporal-spatial dynamics of tidal wetlands and the Coastal Blue Carbon storage (CBCs) in the Yellow River Delta (YRD) under the SLR by 2050 and 2100.
View Article and Find Full Text PDF