Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) are key immune checkpoints (ICs) that critically influence immunotherapy. Tumor resistance to single IC-targeting drugs has increased interest in dual-target drugs, which have shown feasibility for cancer treatment. In this study, we aimed to develop dual-target peptide drugs targeting the PD-1/PD-L1 pathway and to evaluate their efficacy compared to functional antibodies in enhancing the cytotoxicity of human T cells against tongue squamous carcinoma cell lines.
View Article and Find Full Text PDFBlockade of the interaction of the immune checkpoint receptor programmed cell death protein (PD)-1 and its ligand PD-L1 has been found to be a promising cancer treatment. Our previous studies identified that nABPD1 competed with PD-L1 to bind PD-1. The aim of this study was to evaluate the efficacy and safety of anti-tumor immunotherapy of ICIK cells conjugated with peptides in vivo and in vitro.
View Article and Find Full Text PDFSox2 (Sry-box2) is essential for a variety of stem cells and is also expressed in colorectal cancer (CRC). However, the underlying mechanism by which Sox2 enhances CRC progression remains unclear. In the present study, we show that elevated Sox2 expression is significantly correlated with poor clinical prognosis.
View Article and Find Full Text PDFUnlabelled: The decellularization of tissues or organs provides an efficient strategy for preparing functional scaffolds for tissue engineering. The microstructures of native extracellular matrices and biochemical compositions retained in the decellularized matrices provide tissue-specific microenvironments for anchoring cells. Here, we report the tongue extracellular matrix (TEM), which showed favorable cytocompatibility for normal tongue-derived cells and tongue squamous cell carcinoma (TSCC) cells under static or stirring culture conditions.
View Article and Find Full Text PDFHuman osteosarcoma harbors a small subpopulation of cancer stem cells (CSCs) that is believed to be associated with tumor metastasis, radioresistance/chemoresistance, local invasion, and poor clinical outcome. In this study, we found that transforming growth factor β1 (TGF-β1) signaling and a hypoxic environment dramatically induced self-renewal capacity in non-stem osteosarcoma cells, which in turn promoted chemoresistance, tumorigenicity, neovasculogenesis, and metastatic potential. Furthermore, blocking the TGF-β1 signaling pathway resulted in the inhibition of the dedifferentiation and clonogenicity of osteosarcoma cells, and the reduction of CSC self-renewal capacity and hypoxia-mediated dedifferentiation.
View Article and Find Full Text PDFSignificance: Reactive oxygen species (ROS), byproducts of aerobic metabolism, are increased in many types of cancer cells. Increased endogenous ROS lead to adaptive changes and may play pivotal roles in tumorigenesis, metastasis, and resistance to radiation and chemotherapy. In contrast, the ROS generated by xenobiotics disturb the redox balance and may selectively kill cancer cells but spare normal cells.
View Article and Find Full Text PDF