The abnormal effector function of CD4+ T cells plays a key role in the pathogenesis of Sjogren's syndrome (SS) and its associated systematic autoimmune response. Cellular metabolism, including glucose metabolism, lipid metabolism and amino acid metabolism, supports proliferation, migration, survival and differentiation into distinct CD4+ T-cell subsets. Different subtypes of T cells have significantly different demands for related metabolic processes, which enables us to finely regulate CD4+ T cells through different metabolic processes in autoimmune diseases such as SS.
View Article and Find Full Text PDFAcute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an inflammatory response arising from lung and systemic injury with diverse causes and associated with high rates of morbidity and mortality. To date, no fully effective pharmacological therapies have been established and the relevant underlying mechanisms warrant elucidation, which may be facilitated by multi‑omics technology. The present review summarizes the application of multi‑omics technology in identifying novel diagnostic markers and therapeutic strategies of ALI/ARDS as well as its pathogenesis.
View Article and Find Full Text PDFMetabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
A CsCO-promoted [4 + 2] cycloaddition of 1,6-enynes under mild reaction conditions has been developed. This protocol provides a facile approach to a series of tetrahydro-1-benzo[]isoindole isomerized products promoted by CsCO with moderate to high yields. By simply switching the reaction solvent and controlling the reaction time, two isomerization products could be obtained, both with good selectivity.
View Article and Find Full Text PDFSepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS).
View Article and Find Full Text PDFThe epigenetic modifier N6-methyladenosine (m6A), recognized as the most prevalent internal modification in messenger RNA (mRNA), has recently emerged as a pivotal player in immune regulation. Its dysregulation has been implicated in the pathogenesis of various autoimmune conditions. However, the implications of m6A modification within the immune microenvironment of Sjögren's syndrome (SS), a chronic autoimmune disorder characterized by exocrine gland dysfunction, remain unexplored.
View Article and Find Full Text PDFAugmented CD4 T cell response in autoimmunity is characterized by extensive metabolic reprogramming. However, the epigenetic molecule that drives the metabolic adaptation of CD4 T cells remains largely unknown. Here, we show that lysine acetyltransferase 6A (KAT6A), an epigenetic modulator that is clinically associated with autoimmunity, orchestrates the metabolic reprogramming of glucose in CD4 T cells.
View Article and Find Full Text PDFIncreasing studies have shown that N6-methyladenosine (m6A) modification plays an important role in cardiovascular diseases. In this study, we systematically investigated the regulatory mode of m6A genes in myocardial infarction (MI) by combining bioinformatics analysis of clinical samples with animal experiments. We utilized gene expression data of clinical samples from public databases to examine the expression of m6A genes in heart tissues and found a large difference between the healthy control group and MI group.
View Article and Find Full Text PDFInflammopharmacology
October 2023
The hyperproliferation and hyperactivation of CD4 + T cells in salivary gland tissues are hallmarks of Sjögren's syndrome (SS). Fangchinoline (Fan) is extracted from the root of Stephania tetrandra Moore, which is used for treating rheumatic diseases in many studies. This study aimed to identify the mechanism underlying the inhibition of CD4 + T cells by Fan in the SS model NOD/ShiLtj mice.
View Article and Find Full Text PDFSjögren's syndrome (SS) is a chronic autoimmune disorder characterized by exocrine gland dysfunction, leading to loss of salivary function. Histological analysis of salivary glands from SS patients reveals a high infiltration of immune cells, particularly activated CD4 T cells. Thus, interventions targeting abnormal activation of CD4 T cells may provide promising therapeutic strategies for SS.
View Article and Find Full Text PDFAlkaline-earth-metal monohydrides H ( = Be, Mg, Ca, Sr, Ba) have long been regarded as promising candidates toward laser cooling and trapping; however, their rich internal level structures that are amenable to magneto-optical trapping have not been completely explored. Here, we first systematically evaluated Franck-Condon factors of these alkaline-earth-metal monohydrides in the Π ← Σ transition, exploiting three respective methods (the Morse potential, the closed-form approximation, and the Rydberg-Klein-Rees method). The effective Hamiltonian matrix was introduced for MgH, CaH, SrH, and BaH individually in order to figure out their molecular hyperfine structures of Σ, the transition wavelengths in the vacuum, and hyperfine branching ratios of Π(' = 1/2,+) ← Σ( = 1,-), followed by possible sideband modulation proposals to address all hyperfine manifolds.
View Article and Find Full Text PDFA highly regio- and stereoselective hydrochlorination/cyclization of enynes has been reported by FeCl catalysis. A variety of enynes undergo this cyclization transformation with acetic chloride as the chlorine source and HO providing protons via a cationic pathway. This protocol provides a cheap, simple, stereospecific, and effective cyclization to afford heterocyclic alkenyl chloride compounds as isomers with high yields (≤98%) and regioselectivity.
View Article and Find Full Text PDFThe injury of Schwann cells is an important pathological feature of peripheral neuropathy. However, the explicit molecular mechanism and blocking method remains to be explored. In this study, we identified an pivotal executor of necroptosis-RIPK1, performed an unique function in response to oxidative stress-induced injury in Rat Schwann cells.
View Article and Find Full Text PDFCYtochrome P450, family 51 (CYP51) is an important enzyme for de novo cholesterol synthesis in mammalian cells. In the present study, we found that the expression of CYP51 positively correlated with CD4 T cell activation both in vivo and in vitro. The addition of ketoconazole, a pharmacological inhibitor of CYP51, prevented the proliferation and activation of anti-CD3/CD28-expanded mouse CD4 T cells in a dose-dependent fashion.
View Article and Find Full Text PDFOral squamous cell carcinoma (OSCC) is a life-threatening disease, associated with poor prognosis and the absence of specific biomarkers. Studies have shown that the ferroptosis-related genes (FRGs) can be used as tumor prognostic markers. However, FRGs' prognostic value in OSCC needs further exploration.
View Article and Find Full Text PDFBackground: Bone mesenchymal stem cells (BMSCs) have good osteogenic differentiation potential and have become ideal seed cells in bone tissue engineering. However, the osteogenic differentiation ability of BMSCs gradually weakens with age, and the regulatory mechanism is unclear.
Method: We conducted a bioinformatics analysis, dual-luciferase reporter (DLR) experiment, and RNA binding protein immunoprecipitation (RIP) to explore the hub genes that may affect BMSC functions.
Oral squamous cell carcinoma (OSCC) is the most common cancer of oral and maxillofacial region. A recent clinical research has shown that tumor immune microenvironment (TIME)cells are closely related to immunotherapy sensitivity and OSCC prognosis. Nonetheless, a comprehensive analysis of TIME in OSCC has not been reported.
View Article and Find Full Text PDFPrevious studies have shown that abnormal metabolic reprogramming in CD4+ T cells could explain the occurrence of several autoimmune disorders, including Sjogren's syndrome (SS). However, therapeutic targets of the abnormal metabolism of CD4+ T cells remain to be explored. Here, we report that glutaminase 1 (Gls1), a pivotal factor in glutaminolysis, might be involved in the pathogenesis of SS.
View Article and Find Full Text PDFBackground: A growing evidence suggests that long non-coding RNAs (lncRNAs) can function as a microRNA (miRNA) sponge in various diseases including oral cancer. However, the pathophysiological function of lncRNAs remains unclear.
Methods: Based on the competitive endogenous RNA (ceRNA) theory, we constructed a lncRNA-miRNA-mRNA network in oral cancer with the human expression profiles GSE74530 from the Gene Expression Omnibus (GEO) database.