Publications by authors named "Jungyong Lee"

Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled people. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow embodied intelligent vision functionalities.

View Article and Find Full Text PDF

Colloidal quantum dots (CQDs) are promising for infrared photodetectors with high detectivity and low-cost production. Although CQDs enable photoinduced charge multiplication, thermal noise in low-bandgap materials limits their performance in IR detectors. Here we present a pioneering architecture of a CQD-based infrared photodetector that uses kinetically pumped avalanche multiplication.

View Article and Find Full Text PDF
Article Synopsis
  • - Silver bismuth disulfide (AgBiS) colloidal nanocrystals (CNCs) are eco-friendly materials with great photoconductivity, and when used in solar cells, they meet RoHS guidelines for hazardous substances.
  • - To enhance their performance, a new diketopyrrolopyrrole (DPP)-based polymer called BD2FCT is introduced as a hole transport layer, optimizing charge transfer and reducing recombination at the interfaces of the CNCs.
  • - The collaboration of BD2FCT with a low-bandgap acceptor, IEICO-4F, leads to more efficient hole transfer and improved overall solar cell performance, achieving a 10.1% power conversion efficiency.
View Article and Find Full Text PDF
Article Synopsis
  • Hybrid perovskite/organic solar cells (HSCs) are gaining attention due to their easy manufacturing, wide photon absorption, and low voltage losses.
  • A significant challenge in improving their efficiency is the energy mismatch at the interface, causing charge buildup.
  • This study shows that adding a sub-nanometer dipole layer helps minimize this mismatch, leading to improved voltage and carrier movement, ultimately boosting the efficiency of HSCs to a record 24.0%.
View Article and Find Full Text PDF

In this study, we examined the nanostructured molecular packing and orientations of poly[[,'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]--5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) films formed on water for the application of nanotechnology-based organic electronic devices. First, the nanoscale molecule-substrate interaction between the polymer and water was modulated by controlling the alkyl side chain length in NDI-based copolymers. Increasing alkyl side chain lengths induced a nanomorphological transition from face-on to edge-on orientation, confirmed by molecular dynamics simulations revealing nanostructural behavior.

View Article and Find Full Text PDF

Deep-blue perovskite light-emitting diodes (PeLEDs) of high purity are highly sought after for next-generation displays complying with the Rec. 2020 standard. However, mixed-halide perovskite materials designed for deep-blue emitters are prone to halide vacancies, which readily occur because of the low formation energy of chloride vacancies.

View Article and Find Full Text PDF

Hybrid colloidal quantum dot (CQD)/organic architectures are promising candidates for emerging optoelectronic devices having high performance and inexpensive fabrication. For unlocking the potential of CQD/organic hybrid devices, enhancing charge extraction properties at electron transport layer (ETL)/CQD interfaces is crucial. Hence, we carefully adjust the interface properties between the ETL and CQD layer by incorporating an interfacial layer for the ETL (EIL) using several types of cinnamic acid ligands.

View Article and Find Full Text PDF
Article Synopsis
  • Lead sulfide (PbS) colloidal quantum dots (CQDs) show promise for flexible solar cells due to their ability to absorb near-infrared light and their tunable bandgap, but they're limited by poor mechanical properties.
  • This study introduces (3-aminopropyl)triethoxysilane (APTS) to enhance dot-to-dot bonding in CQD films, resulting in improved mechanical stability and resistance to cracking under stress.
  • The treated solar cells maintain 88% of their initial power conversion efficiency after 12,000 bending cycles, achieving a high efficiency of 11.04%, making them competitive in the market for flexible solar technologies.
View Article and Find Full Text PDF

Recurrent implantation failure (RIF) refers to two or more unsuccessful in vitro fertilization embryo transfers in the same individual. Embryonic characteristics, immunological factors, and coagulation factors are known to be the causes of RIF. Genetic factors have also been reported to be involved in the occurrence of RIF, and some single nucleotide polymorphisms (SNPs) may contribute to RIF.

View Article and Find Full Text PDF

The corrosion mechanism and kinetics of the silver-coated conductive yarn (SCCY) used for wearable electronics were investigated under a NaCl solution, a main component of sweat. The corrosion occurs according to the mechanism in which silver reacts with chlorine ions to partly form sliver chloride on the surface of the SCCY and then the local silver chloride is detached into the electrolyte, leading to the electrical disconnect of the silver coating. Thus, the electrical conductance of the SCCY goes to zero after 2.

View Article and Find Full Text PDF

Liquid metals are attractive materials for stretchable electronics owing to their high electrical conductivity and near-zero Young's modulus. However, the high surface tension of liquid metals makes it difficult to form films. A novel stretchable film is proposed based on an over-layered liquid-metal network.

View Article and Find Full Text PDF

Intrinsically stretchable organic solar cells (IS-OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (P s, PhAmX) featuring phenyl amide (N ,N -bis((5-bromothiophen-2-yl)methyl)isophthalamide, PhAm)-based flexible spacer (FS) inducing hydrogen-bonding (H-bonding) interactions is developed.

View Article and Find Full Text PDF

Recent advances in the power conversion efficiency (PCE) of organic solar cells (OSCs) have greatly enhanced their commercial viability. Considering the technical standards (e.g.

View Article and Find Full Text PDF

Although post-synthetic anion exchange allows halide perovskite quantum dots to easily change the optical bandgap of materials, additional exchange of shorter ligands is required to use them as active materials in optoelectronic devices. In this study, a novel all-in-one process exchanging ligands and halide anions in film-state for facile color tuning and patterning of cesium lead halide perovskite colloidal quantum dot (PeQD) light-emitting diodes (LEDs) is proposed. The proposed all-in-one process significantly enhances the performances of PeQD LEDs by passivating the PeQD with shorter ligands.

View Article and Find Full Text PDF

Highly efficient vacuum-deposited CsPbBr perovskite light-emitting diodes (PeLEDs) are demonstrated by introducing a separate polyethylene oxide (PEO) passivation layer. A CsPbBr film deposited on the PEO layer via thermal co-evaporation of CsBr and PbBr exhibits an almost 50-fold increase in photoluminescence quantum yield intensity compared to a reference sample without PEO. This enhancement is attributed to the passivation of interfacial defects of the perovskite, as evidenced by temperature-dependent photoluminescence measurements.

View Article and Find Full Text PDF

Despite the excellent electrical conductivity of metal thin film electrodes, their poor mechanical stretchability makes it extremely difficult to apply them as stretchable interconnect electrodes. Thus, we propose a novel stretchable hybrid electrode (SHE) by adopting two strategies to overcome the metal thin film electrode limitations: grain size engineering and hybridization with conductive interlayers. The grain size engineering technique improves the inherent metal thin film stretchability according to the Hall-Petch theory, and the hybridization of the conductive interlayer materials, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and carbon nanotube (CNT), suppresses crack propagation.

View Article and Find Full Text PDF

Colloidal quantum dots (CQDs) have large surface-to-volume ratios; thus, surface control is critical, especially when CQDs are utilized in optoelectronic devices. Layer-by-layer solid-state ligand exchange is a facile and applicable process for the formation of conductive CQD solids through various ligands; however, achieving complete ligand exchange on the CQD surface without dangling bonds is challenging. Herein, we demonstrate that CQDs can be further passivated through two-step annealing; air annealing forms sulfonate bonding at (111) Pb-rich surfaces, and subsequent N annealing removes insulating oxygen layers from the (100) surfaces of CQDs.

View Article and Find Full Text PDF

This study proposes a reliable and self-powered hydrogen (H) gas sensor composed of a chemo-mechanically operating nanostructured film and photovoltaic cell. Specifically, the nanostructured film has a configuration in which an asymmetrically coated palladium (Pd) film is coated on a periodic polyurethane acrylate (PUA) nanograting. The asymmetric Pd nanostructures, optimized by a finite element method simulation, swell upon reacting with H and thereby bend the PUA nanograting, changing the amount of transmitted light and the current output of the photovoltaic cell.

View Article and Find Full Text PDF

Metal nanowires (NWs) are promising transparent conducting electrode (TCE) materials because of their excellent optoelectrical performance, intrinsic mechanical flexibility, and large-scale processability. However, the surface roughness, thermal/chemical instability, and limited electrical conductivity associated with empty spaces between metal NWs are problems that are yet to be solved. Here, we report a highly reliable and robust composite TCE/substrate all-in-one platform that consists of crystalline indium tin oxide (c-ITO) top layer and surface-embedded metal NW (c-ITO/AgNW-GFRH) films for flexible optoelectronics.

View Article and Find Full Text PDF

We report a new type of self-powered gas sensors based on the combination of a colorimetric film with hierarchical micro/nanostructures and organic photovoltaic cells. The transmittance of the colorimetric film with micro/nanostructures coated with ,,','-tetramethyl--phenylenediamine (TMPD) changes by reacting with NO gas, and it is measured as a current output of the photovoltaic cell. For this purpose, materials for the organic photovoltaic cells were carefully chosen to match the working wavelength of the TMPD.

View Article and Find Full Text PDF

Metallic thin films often exhibit poor mechanical robustness, which makes them unsuitable for use as electrodes in flexible and stretchable electronic devices. This prompted us to investigate the effect of creating a pattern of nanoholes in a metallic thin film to its mechanical and electrical properties. The adoption of nanonetwork structures is shown to confer significantly improved bendability to the films, with a change in electrical resistance of only 21% after 10 000 bending cycles, under a bending strain of 6.

View Article and Find Full Text PDF

The facile sequential deposition of functional organic thin films by solution processes is critical for the development of a variety of high-performance organic devices without restriction in terms of materials and processes. Herein, we propose a simple fabrication process that entails stacking multiple layers of functional polymers to fabricate organic field-effect transistors (OFETs). The process involves stamping organic semiconducting layers formed on the surface of water onto a commonly used polymeric dielectric layer.

View Article and Find Full Text PDF

Perovskite light-emitting diodes have recently broken the 20% barrier for external quantum efficiency. These values cannot be explained with classical models for optical outcoupling. Here, we analyse the role of photon recycling (PR) in assisting light extraction from perovskite light-emitting diodes.

View Article and Find Full Text PDF

Microalgal photosynthesis is a promising solar energy conversion process to produce high concentration biomass, which can be utilized in the various fields including bioenergy, food resources, and medicine. In this research, we study the optical design rule for microalgal cultivation systems, to efficiently utilize the solar energy and improve the photosynthesis efficiency. First, an organic luminescent dye of 3,6-Bis(4'-(diphenylamino)-1,1'-biphenyl-4-yl)-2,5-dihexyl-2,5-dihydropyrrolo3,4-c pyrrole -1,4-dione (D1) was coated on a photobioreactor (PBR) for microalgal cultivation.

View Article and Find Full Text PDF

A novel approach to fabricate flexible organic solar cells is proposed without indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) using junction-free metal nanonetworks (NNs) as transparent electrodes. The metal NNs are monolithically etched using nanoscale shadow masks, and they exhibit excellent optoelectronic performance. Furthermore, the optoelectrical properties of the NNs can be controlled by both the initial metal layer thickness and NN density.

View Article and Find Full Text PDF