Publications by authors named "Jungwun Hwang"

A comprehensive experimental survey consisting of 36 molecular balances was conducted to compare 18 pairs of S-π versus O-π interactions over a wide range of structural, geometric, and solvent parameters. A strong linear correlation was observed between the folding energies of the sulfur and oxygen balances across the entire library of balance pairs. The more stable interaction systematically switched from the O-π to S-π interaction.

View Article and Find Full Text PDF

The stabilizing and destabilizing effects of alkyl groups on an aromatic stacking interaction were experimentally measured in solution. The size (Me, Et, iPr, and tBu) and position (meta and para) of the alkyl groups were varied in a molecular balance model system designed to measure the strength of an intramolecular aromatic interaction. Opposite stability trends were observed for alkyl substituents at different positions on the aromatic rings.

View Article and Find Full Text PDF

A dynamic intramolecular charge-transfer (CT) complex was designed that displayed reversible colour changes in the solid-state when treated with different organic solvents. The origins of the dichromatism were shown to be due to solvent-inclusion, which induced changes in the relative orientations of the donor pyrene and acceptor naphthalenediimide units.

View Article and Find Full Text PDF

In this study, the contributions of London dispersion forces to the strength of aromatic stacking interactions in solution were experimentally assessed using a small molecule model system. A series of molecular torsion balances were designed to measure an intramolecular stacking interaction a conformational equilibrium. To probe the importance of the dispersion term, the size and polarizability of one of the aromatic surfaces were systematically increased (benzene, naphthalene, phenanthrene, biphenyl, diphenylethene, and diphenylacetylene).

View Article and Find Full Text PDF

A new series of molecular torsion balances were designed to measure the strength of individual Ag-π interactions in solution for an Ag(I) coordinated to a pyridine nitrogen. The formation of a well-defined intramolecular Ag-π interaction in these model systems was verified by X-ray crystallography and (1)H NMR. The strength of the intramolecular Ag-π interaction in solution was found to be stabilizing in nature and quantified to be -1.

View Article and Find Full Text PDF

The goal of this study was to experimentally test the additivity of the electrostatic substituent effects (SEs) for the aromatic stacking interaction. The additivity of the SEs was assessed using a small molecule model system that could adopt an offset face-to-face aromatic stacking geometry. The intramolecular interactions of these molecular torsional balances were quantitatively measured via the changes in a folded/unfolded conformational equilibrium.

View Article and Find Full Text PDF

CH-π interactions have been cited as an important contributor to carbohydrate recognition. To determine whether N-heterocycles form stronger CH-π interactions, the interactions of methyl ether groups with heterocyclic and nonheterocyclic aromatic surfaces were studied. Both experimental and computational experiments found that N-heterocyclic aromatic surfaces formed stronger interactions.

View Article and Find Full Text PDF