Publications by authors named "Jungong Jin"

Parkinson's disease (PD) is a chronic neurodegenerative disorder caused by loss of dopaminergic neurons in the substantia nigra compacta, which may result from mitochondrial dysfunction and oxidative stress. Isorhamnetin (Iso) has important antioxidative stress and antiapoptotic effects, this study investigated the effects of Iso on PD in vitro and its underlying mechanisms using a model of 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y cell damage. The results showed that Iso significantly ameliorated 6-OHDA-induced SH-SY5Y cell injury, including decreased cell viability, increased apoptosis and senescence, and oxidative stress injury.

View Article and Find Full Text PDF

Background: Neuropathic pain is a refractory disease and badly impacts the lives of patients. Urinary kallikrein (UK) acted as a glycoprotein has been discovered to play a pivotal role in neuroprotection. However, the regulatory impacts and correlative pathways of UK in the progression of neuropathic pain remain dimness.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a universal leading cause of long-term neurological disability and causes a huge burden to an ever-growing population. Moderate intensity of treadmill exercise has been recognized as an efficient intervention to combat TBI-induced motor and cognitive disorders, yet the underlying mechanism is still unclear. Ferroptosis is known to be highly implicated in TBI pathophysiology, and the anti-ferroptosis effects of treadmill exercise have been reported in other neurological diseases except for TBI.

View Article and Find Full Text PDF

Patients with TLE are prone to tolerance to antiepileptic drugs. Based on the perspective of molecular targets for drug resistance, it is necessary to explore effective drug resistant genes and signaling pathways for the treatment of TLE. We performed gene expression profiles in hippocampus of patients with drug-resistant TLE and identified ROCK2 as one of the 20 most significantly increased genes in hippocampus.

View Article and Find Full Text PDF

Glioma is the most common and lethal malignant intracranial tumor. Long noncoding RNAs (lncRNAs) have been identified as pivotal regulators in the tumorigenesis of glioma. However, the role of lncRNA urothelial carcinoma-associated 1 (UCA1) in glioma genesis is still unknown.

View Article and Find Full Text PDF

BACKGROUND Post-traumatic epilepsy (PTE) is a common type of acquired epilepsies secondary to traumatic brain injury (TBI), accounting for approximately 10-25% of patients. The present study evaluated activity of PP-4-one against mTOR signaling activation in a rat model of FeCl₂-induced post-traumatic epilepsy. MATERIAL AND METHODS Epilepsy in rats was induced by injecting 10 µl FeCl₂ (concentration 100 mM) at a uniform rate of 1 µl/minute.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a novel category of non-coding RNAs, and they have been identified to participate in glioma tumorigenesis. Here we investigated the functions of circRNA circSCAF11 in glioma genesis, and we unveiled its molecular mechanism in the pathophysiological process. Expression levels of circSCAF11, miR-421, and SP1 mRNA were measured using RT-PCR.

View Article and Find Full Text PDF

The biological functions of long noncoding RNAs (lncRNAs) in the glioma have gained much attention in recent researches. However, the deepgoing mechanism by which lncRNA regulates the gliomagenesis is still ambiguous. In this work, we found that lncRNA CASC11 was significantly up-regulated in the glioma specimens and cells, and the ectopic overexpression indicated the poor prognosis of glioma patients.

View Article and Find Full Text PDF

Glioma is the most common and lethal malignant intracranial tumor. Long noncoding RNAs (lncRNAs) have been identified as pivotal regulators in the tumorigenesis of glioma. However, the role of lncRNA urothelial carcinoma-associated 1 (UCA1) in glioma genesis is still unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how stress in cells, like low oxygen or glucose, can help protect brain cells from epilepsy.
  • They found that a special protein (MCT4) helps brain cells use energy better during tough situations.
  • Preconditioning with low oxygen for a few days helps protect against seizures, but if the energy transportation doesn't work right, it can stop this protection.
View Article and Find Full Text PDF