Adv Healthc Mater
November 2024
A Customized wound patch for Advanced tissue Regeneration with Electric field (CARE), featuring an autonomous robot arm printing system guided by a computer vision-enabled guidance system for fast image recognition is introduced. CARE addresses the growing demand for flexible, stretchable, and wireless adhesive bioelectronics tailored for electrotherapy, which is suitable for rapid adaptation to individual patients and practical implementation in a comfortable design. The visual guidance system integrating a 6-axis robot arm enables scans from multiple angles to provide a 3D map of complex and curved wounds.
View Article and Find Full Text PDFIn drug discovery, human organ-on-a-chip (organ chip) technology has emerged as an essential tool for preclinical testing, offering a realistic representation of human physiology, real-time monitoring, and disease modeling. Polydimethylsiloxane (PDMS) is commonly used in organ chip fabrication owing to its biocompatibility, flexibility, transparency, and ability to replicate features down to the nanoscale. However, the porous nature of PDMS leads to unintended absorption of small molecules, critically affecting the drug response analysis.
View Article and Find Full Text PDFAccurate postoperative assessment of varying mechanical properties is crucial for customizing patient-specific treatments and optimizing rehabilitation strategies following Achilles tendon (AT) rupture and reconstruction surgery. This study introduces a wireless, chip-less, and immune-tolerant in vivo strain-sensing suture designed to continuously monitor mechanical stiffness variations in the reconstructed AT throughout the healing process. This innovative sensing suture integrates a standard medical suturing thread with a wireless fiber strain-sensing system, which incorporates a fiber strain sensor and a double-layered inductive coil for wireless readout.
View Article and Find Full Text PDFSeamless integration and conformal contact of soft electronics with tissue surfaces have emerged as major challenges in realizing accurate monitoring of biological signals. However, the mechanical mismatch between the electronics and biological tissues impedes the conformal interfacing between them. Attempts have been made to utilize soft hydrogels as the bioelectronic materials to realize tissue-comfortable bioelectronics.
View Article and Find Full Text PDFHydrogels are used in wound dressings because of their tissue-like softness and biocompatibility. However, the clinical translation of hydrogels remains challenging because of their long-term stability, water swellability, and poor tissue adhesiveness. Here, tannic acid (TA) is introduced into a double network (DN) hydrogel consisting of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) to realize a tough, self-healable, nonswellable, conformally tissue-adhesive, hemostatic, and antibacterial hydrogel.
View Article and Find Full Text PDFImplantable biomedical devices require an anti-biofouling, mechanically robust, low friction surface for a prolonged lifespan and improved performance. However, there exist no methods that could provide uniform and effective coatings for medical devices with complex shapes and materials to prevent immune-related side effects and thrombosis when they encounter biological tissues. Here, we report a lubricant skin (L-skin), a coating method based on the application of thin layers of bio-adhesive and lubricant-swellable perfluoropolymer that impart anti-biofouling, frictionless, robust, and heat-mediated self-healing properties.
View Article and Find Full Text PDFCoronary artery bypass grafting is commonly used to treat cardiovascular diseases by replacing blocked blood vessels with autologous or artificial blood vessels. Nevertheless, the availability of autologous vessels in infants and the elderly and low long-term patency rate of grafts hinder extensive application of autologous vessels in clinical practice. The biological and mechanical properties of the resealable antithrombotic artificial vascular graft (RAAVG) fabricated herein, comprising a bioelectronic conduit based on a tough self-healing polymer (T-SHP) and a lubricious inner coating, match with the functions of autologous blood vessels.
View Article and Find Full Text PDFDeveloping bioelectronics that retains their long-term functionalities in the human body during daily activities is a current critical issue. To accomplish this, robust tissue adaptability and biointerfacing of bioelectronics should be achieved. Hydrogels have emerged as promising materials for bioelectronics that can softly adapt to and interface with tissues.
View Article and Find Full Text PDFElectrical impedance biosensors are powerful and continuously being developed for various biological sensing applications. In this line, the sensitivity of impedance biosensors embedded with microfluidic technologies, such as sheath flow focusing, dielectrophoretic focusing, and interdigitated electrode arrays, can still be greatly improved. In particular, reagent consumption reduction and analysis time-shortening features can highly increase the analytical capabilities of such biosensors.
View Article and Find Full Text PDFWith narrow and dense nanoarchitectures increasingly adopted to improve optical functionality, achieving the complete wetting of photonic devices is required when aiming at underwater molecule detection over the water-repellent optical materials. Despite continuous advances in photonic applications, real-time monitoring of nanoscale wetting transitions across nanostructures with 10-nm gaps, the distance at which photonic performance is maximized, remains a chronic hurdle when attempting to quantify the water influx and molecules therein. For this reason, the present study develops a photonic switch that transforms the wetting transition into perceivable color changes using a liquid-permeable Fabry-Perot resonator.
View Article and Find Full Text PDFSurgical sutures are widely used for closing wounds in skin. However, the monitoring of wound integrity and promoting tissue regeneration at the same time still remains a challenge. To address this, we developed a drug-releasing electronic suture system (DRESS) to monitor the suture integrity in real-time and enhance tissue regeneration by triggered drug release.
View Article and Find Full Text PDFFor the past decades, several bioadhesives have been developed to replace conventional wound closure medical tools such as sutures, staples, and clips. The bioadhesives are easy to use and can minimize tissue damage. They are designed to provide strong adhesion with stable mechanical support on tissue surfaces.
View Article and Find Full Text PDFBrain-machine interfaces (BMIs) that link the brain to a machine are promising for the treatment of neurological disorders through the bi-directional translation of neural information over extended periods. However, the longevity of such implanted devices remains limited by the deterioration of their signal sensitivity over time due to acute inflammation from insertion trauma and chronic inflammation caused by the foreign body reaction. To address this challenge, a lubricated surface is fabricated to minimize friction during insertion and avoid immunogenicity during neural signal recording.
View Article and Find Full Text PDFRecent advances in diagnostics and medicines emphasize the spatial and temporal aspects of monitoring and treating diseases. However, conventional therapeutics, including oral administration and injection, have difficulties meeting these aspects due to physiological and technological limitations, such as long-term implantation and a narrow therapeutic window. As an innovative approach to overcome these limitations, electronic devices known as electronic drugs (e-drugs) have been developed to monitor real-time body signals and deliver specific treatments to targeted tissues or organs.
View Article and Find Full Text PDFBacterial infection and infection-induced immune response have been a life-threatening risk for patients having orthopedic implant surgeries. Conventional biomaterials are vulnerable to biocontamination, which causes bacterial invasion in wounded areas, leading to postoperative infection. Therefore, development of anti-infection and immune-evasive coating for orthopedic implants is urgently needed.
View Article and Find Full Text PDFWhile a clear operating field during endoscopy is essential for accurate diagnosis and effective surgery, fogging or biofouling of the lens can cause loss of visibility during these procedures. Conventional cleaning methods such as the use of an irrigation unit, anti-fogging surfactant, or particle-based porous coatings infused with lubricants have been used but proven insufficient to prevent loss of visibility. Herein, a mechanically robust anti-fogging and anti-biofouling endoscope lens was developed by forming a lubricant-infused directly engraved nano-/micro-structured surface (LIDENS) on the lens.
View Article and Find Full Text PDFBiocompatible, electrically conductive microfibers with superior mechanical properties have received a great attention due to their potential applications in various biomedical applications such as implantable medical devices, biosensors, artificial muscles, and microactuators. Here, we developed an electrically conductive and mechanically stable carbon nanotube-based microactuator with a low degradability that makes it usable for an implantable device in the body or biological environments. The microfiber was composed of hyaluronic acid (HA) hydrogel and single-wall carbon nanotubes (SWCNTs) (HA/SWCNT).
View Article and Find Full Text PDFIn the last decades, bioengineers have developed myriad biomaterials for regenerative medicine. Development of screening techniques is essential for understanding complex behavior of cells in the biological microenvironments. Conventional approaches to the screening of cellular behavior in vitro have limitations in terms of accuracy, reusability, labor-intensive screening, and versatility.
View Article and Find Full Text PDFAdv Healthc Mater
February 2019
Cardiac tissue is characterized by being dynamic and contractile, imparting the important role of biomechanical cues in the regulation of normal physiological activity or pathological remodeling. However, the dynamic mechanical tension ability also varies due to extracellular matrix remodeling in fibrosis, accompanied with the phenotypic transition from cardiac fibroblasts (CFs) to myofibroblasts. It is hypothesized that the dynamic mechanical tension ability regulates cardiac phenotypic transition within fibrosis in a strain-mediated manner.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
Superomniphobic surfaces showing extremely liquid-repellent properties have received a great amount of attention as they can be used in various industrial and biomedical applications. However, so far, the fabrication processes of these materials mostly have involved the coating of perfluorocarbons onto micro- and nanohierarchical structures of these surfaces, which inevitably causes environmental pollution, leading to health concerns. Herein, we developed a facile method to obtain flexible superomniphobic surfaces without perfluorocarbon coatings that have shape-tunable mushroom-like micropillars (MPs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
Major concerns in the development of wearable textile electronics are exposure to moisture and contamination. The exposure can cause electrical breakdown of the device and its interconnections, and thus continuous efforts have been made to fabricate textile electronics which are free from moisture and pollution. Herein, we developed a highly conductive and waterproof fiber with excellent electrical conductivity (0.
View Article and Find Full Text PDF