Although the coronavirus pandemic has ended, new variants of concern (VOCs) continue to emerge. Therefore, novel vaccines targeting VOCs are highly warranted. We initially constructed three recombinant baculovirus-vectored vaccines (AcHERV-COVID19S) carrying the spike genes of the SARS-CoV-2 prototype, Delta, and Omicron BA.
View Article and Find Full Text PDFVaricella-zoster virus (VZV) poses lifelong risks, causing varicella and herpes zoster (HZ, shingles). Currently, varicella and HZ vaccines are predominantly live attenuated vaccines or adjuvanted subunit vaccines utilizing VZV glycoprotein E (gE). Here, we propose our vaccine candidates involving a comparative analysis between recombinant baculoviral vector vaccines (AcHERV) and a live attenuated vaccine strain, vOka.
View Article and Find Full Text PDFVarious types of vaccines have been developed against COVID-19, including vector vaccines. Among the COVID-19 vaccines, AstraZeneca's chimpanzee adenoviral vaccine was the first to be commercialized. For viral vector vaccines, biodistribution studies are critical to vaccine safety, gene delivery, and efficacy.
View Article and Find Full Text PDFAfter severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) made the world tremble with a global pandemic, SARS-CoV2 vaccines were developed. However, due to the coronavirus's intrinsic nature, new variants emerged, such as Delta and Omicron, refractory to the vaccines derived using the original Wuhan strain. We developed an HERV-enveloped recombinant baculoviral DNA vaccine against SARS-CoV2 (AcHERV-COVID19S).
View Article and Find Full Text PDFThe Zika virus (ZIKV) is a mosquito-borne member of the family of enveloped RNA viruses. The correlation between viral infection and fetal microcephaly was revealed in 2015, yet we still lack a vaccine against ZIKV. Here, we present a genetic vaccine that delivers the premembrane (prM) and envelope (E) genes of ZIKV using a recombinant baculovirus vector that expresses a human endogenous retrovirus (HERV) envelope on its surface to enhance gene delivery.
View Article and Find Full Text PDFMiddle East respiratory syndrome coronavirus (MERS-CoV) induces severe respiratory impairment with a reported mortality rate of ~36% in humans. The absence of clinically available MERS-CoV vaccines and treatments to date has resulted in uncontrolled incidence and propagation of the virus. In vaccine design, fusion with the IgG Fc domain is reported to increase the immunogenicity of various vaccine antigens.
View Article and Find Full Text PDF