A molecular (trial-by-trial) analysis of data from a cocktail-party, target-talker search task was used to test two general classes of explanations accounting for individual differences in listener performance: cue weighting models for which errors are tied to the speech features talkers have in common with the target and internal noise models for which errors are largely independent of these features. The speech of eight different talkers was played simultaneously over eight different loudspeakers surrounding the listener. The locations of the eight talkers varied at random from trial to trial.
View Article and Find Full Text PDFOver six decades ago, Cherry (1953) drew attention to what he called the "cocktail-party problem"; the challenge of segregating the speech of one talker from others speaking at the same time. The problem has been actively researched ever since but for all this time one observation has eluded explanation. It is the wide variation in performance of individual listeners.
View Article and Find Full Text PDFAn approach is borrowed from Measurement Theory [Krantz et al. (1971). Foundations of Measurement (Academic, New York), Vol.
View Article and Find Full Text PDFListeners differ widely in the ability to follow the speech of a single talker in a noisy crowd-what is called the cocktail-party effect. Differences may arise for any one or a combination of factors associated with auditory sensitivity, selective attention, working memory, and decision making required for effective listening. The present study attempts to narrow the possibilities by grouping explanations into model classes based on model predictions for the types of errors that distinguish better from poorer performing listeners in a vowel segregation and talker identification task.
View Article and Find Full Text PDFAuditory evoked potentials (AEP) reflect spectro-temporal feature changes within the spoken word and are sufficiently reliable to probe deficits in auditory processing. The current research assessed whether attentional modulation would alter the morphology of these AEPs and whether native-language experience with phoneme sequences would influence the effects of attention. Native-English and native-Polish adults listened to nonsense word pairs that contained the phoneme sequence onsets /st/, /sət/, /pət/ that occur in both the Polish and English languages and the phoneme sequence onset /pt/ that occurs in the Polish language, but not the English language.
View Article and Find Full Text PDFResearch on hearing has long been challenged with understanding our exceptional ability to hear out individual sounds in a mixture (the so-called cocktail party problem). Two general approaches to the problem have been taken using sequences of tones as stimuli. The first has focused on our tendency to hear sequences, sufficiently separated in frequency, split into separate cohesive streams (auditory streaming).
View Article and Find Full Text PDFAn unexpected finding of previous psychophysical studies is that listeners show highly replicable, individualistic patterns of decision weights on frequencies affecting their performance in spectral discrimination tasks--what has been referred to as individual listening styles. We, like many other researchers, have attributed these listening styles to peculiarities in how listeners attend to sounds, but we now believe they partially reflect irregularities in cochlear micromechanics modifying what listeners hear. The most striking evidence for cochlear irregularities is the presence of low-level spontaneous otoacoustic emissions (SOAEs) measured in the ear canal and the systematic variation in stimulus frequency otoacoustic emissions (SFOAEs), both of which result from back-propagation of waves in the cochlea.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2015
Stimulus uncertainty is known to critically affect auditory masking, but its influence on auditory streaming has been largely ignored. Standard ABA-ABA tone sequences were made increasingly uncertain by increasing the sigma of normal distributions from which the frequency, level, or duration of tones were randomly drawn. Consistent with predictions based on a model of masking by Lutfi, Gilbertson, Chang, and Stamas [J.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
December 2014
Medial olivocochlear (MOC) influence on cochlear mechanics can be noninvasively, albeit indirectly, explored via the effects of contralateral acoustic stimulation (CAS) on otoacoustic emissions. CAS-mediated effects are particularly pronounced for spontaneous otoacoustic emissions (SOAEs), which are typically reduced in amplitude and shifted upward in frequency by CAS. We investigated whether similar frequency shifts and magnitude reductions were observed behaviorally in the fine structure of pure-tone hearing thresholds, a phenomenon thought to share a common underlying mechanism with SOAEs.
View Article and Find Full Text PDFAsian-Australas J Anim Sci
July 2013
The triploid Pacific oyster, which is produced by mating tetraploid and diploid oysters, is favored by the aquaculture industry because of its better flavor and firmer texture, particularly during the summer. However, tetraploid oyster production is not feasible in all oysters; the development of tetraploid oysters is ongoing in some oyster species. Thus, a method for ploidy verification is necessary for this endeavor, in addition to ploidy verification in aquaculture farms and in the natural environment.
View Article and Find Full Text PDFThe objectives of this study were to investigate color patterns of shell and mantle edge pigmentation of a Pacific oyster, C. gigas, and to estimate variance components of the two colors. A sample of 240 F0 oysters was collected from six aquaculture farms in Tongyeong, Korea to measure shell color and mantle edge pigmentation.
View Article and Find Full Text PDFHearing thresholds have been shown to exhibit periodic minima and maxima, a pattern known as threshold microstructure. Microstructure has previously been linked to spontaneous otoacoustic emissions (SOAEs) and normal cochlear function. However, SOAEs at high frequencies (>4 kHz) have been associated with hearing loss or cochlear pathology in some reports.
View Article and Find Full Text PDFDistortion-product otoacoustic emission (DPOAE) fine structure and component characteristics are reported between 0.75 and 16 kHz in 356 clinically normal hearing human subjects ages 10 to 65 yr. Stimulus tones at 55/40, 65/55, and 75/75 dB SPL were delivered using custom designed drivers and a calibration method that compensated for the depth of insertion of the otoacoustic emission (OAE) probe in the ear canal.
View Article and Find Full Text PDFThe value of assessing auditory function at frequencies above 8kHz to detect age-related changes and ototoxic damage in the cochlea is well established but not commonplace. Physiological changes in the auditory periphery due to age and ototoxicity are initially evident, and most prominent, at frequencies above 8kHz [1]. The most well investigated use of hearing thresholds and otoacoustic emissions above 8kHz is in monitoring auditory function in patients undergoing chemotherapy [2].
View Article and Find Full Text PDFIt has been proposed that OAEs be classified not on the basis of the stimuli used to evoke them, but on the mechanisms that produce them (Shera and Guinan, 1999). One branch of this taxonomy focuses on a coherent reflection model and explicitly describes interrelationships between spontaneous emissions (SOAEs) and stimulus-frequency emissions (SFOAEs). The present study empirically examines SOAEs and SFOAEs from individual ears within the context of model predictions, using a low stimulus level (20 dB SPL) to evoke SFOAEs.
View Article and Find Full Text PDFObjectives: The purpose of this study was to obtain behavioral hearing thresholds for frequencies between 0.125 and 20 kHz from a large population between 10 and 65 yr old using a clinically feasible calibration method expected to compensate well for variations in the distance between the eardrum and an insert-type sound source. Previous reports of hearing thresholds in the extended high frequencies (>8 kHz) have either used calibration techniques known to be inaccurate or specialized equipment not suitable for clinical use.
View Article and Find Full Text PDFWhen hearing thresholds are measured with high-frequency resolution there is a pseudo-periodic variation in thresholds across frequency of up to 15-20dB. This variation is called threshold fine structure (previously referred to as threshold microstructure). Consequently, estimates of auditory status based on threshold measures can depend greatly on the specific frequency evaluated.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2008
Distortion product otoacoustic emission (DPOAE) level from normal hearing individuals can vary by as much as 30 dB with small frequency changes (a phenomenon known as DPOAE fine structure). This fine structure is hypothesized to stem from the interaction of components from two different regions of the cochlea (the nonlinear generator region and the reflection component from the DP region). An efficient procedure to separate these two components would improve the clinical and research utility of DPOAE by permitting separate evaluation of different cochlea regions.
View Article and Find Full Text PDFSpectral integration was measured for pure-tone signals masked by unmodulated or modulated noise bands centered at the signal frequencies. The bands were typically 100 Hz wide, and when modulated, they were sinusoidally amplitude modulated at a rate of 8 Hz and a depth of 100%. In experiment 1, thresholds were first measured for each individual pure tone of a triplet in the presence of its respective masker band, and then for those three tones added together at their respective threshold levels, masked by their respective masker bands.
View Article and Find Full Text PDF