Publications by authors named "Jungjoon Lee"

Ultraviolet (UV) B irradiation is closely related to skin aging and skin damage. Here, we report the photoprotective mechanism of action of ginseng berry rare saponins (GFRS) on UVB-induced damage to human keratinocytes and mouse skin. Several UVB irradiation-induced cytotoxicity and oxidative stress responses were assessed.

View Article and Find Full Text PDF

Inflammation is the body's protective immune response to tissue damage. Ginseng has a long history of medicinal use, and its active ingredient ginsenosides have anti-inflammatory effects. Ginseng fruit rare saponins (GFRS) is a transformation product of ginseng saponins and rich in a variety of rare saponins.

View Article and Find Full Text PDF
Article Synopsis
  • CRISPR technology has changed genome editing but faces challenges with safe and efficient delivery methods for therapeutic uses.
  • The droplet cell pincher (DCP) microfluidic system offers a solution by enabling controlled and efficient delivery of CRISPR systems into cells, using mechanisms that create openings in cell membranes.
  • DCP has shown superior performance over traditional electroporation, achieving significantly higher success rates in genetic modifications like single and double knockouts and knock-ins, making it a promising tool for future CRISPR applications.
View Article and Find Full Text PDF

GFRS is the conversion product of Panax ginseng Meyer berry after citric acid heat treatment, which is rich in rare ginsenosides. However, the anti-melanin role of GFRS in the regulation of skin pigmentation and its material basis remains unclear. To compare the anti-melanin activity before and after citric acid heat treatment, we determined the effects of GFS and GFRS on tyrosinase activity and melanin lever under α-MSH stimulation and found the potential anti-melanin effect of GFRS.

View Article and Find Full Text PDF

While computational epitope prediction methods have found broad application, their use, specifically in allergy-related contexts, remains relatively less explored. This study benchmarks several publicly available epitope prediction tools, focusing on the allergenic IgE and T-cell epitopes of Fel d 1, an extensively studied allergen. Using a variety of tools accessible via the Immune Epitope Database (IEDB) and other resources, we evaluate their ability to identify the known linear IgE and T-cell epitopes of Fel d 1.

View Article and Find Full Text PDF

Ginger is an important cooking spice and herb worldwide, and scientific research has gradually confirmed the effect of ginger on preventing hair loss. Cedrol (CE) is a small sesquiterpene molecule in ginger and its external administration (EA) has shown hope in promoting hair growth, and alternative administration mode has become a potential treatment scheme to improve the efficacy of CE. The purpose of this study is to evaluate the effects of oral administration (OA) and EA of CE on hair regeneration of C57BL/6 alopecia areata (AA) mice induced by cyclophosphamide (CP) and to clarify the potential hair growth mechanism of CE in AA model in vitro and in vivo.

View Article and Find Full Text PDF

Based on the significant biological activities and the remarkable physical and chemical properties of 1H-1,2,3-triazole pharmacophore, we herein adopted the strategy of click chemistry to combine the triazole fragment and the unique scaffold of 25-OCH-PPD (AD-1) to design a series of potent compounds inducing apoptosis and DNA damage. The anti-proliferative effect was verified by MTT assay and colony formation assay. DNA double-stand breaks (DSBs) were obtained by observing the nuclear focus formation and the protein expression of γ-H2AX.

View Article and Find Full Text PDF

In this study, we designed and synthesized 19 nitrogen-containing heterocyclic derivatives of panaxadiol (PD). We first reported the antiproliferative activity of these compounds against four different tumor cells. The results of the MTT assay showed that the PD pyrazole derivative (compound 12b) had the best antitumor activity and could significantly inhibit the proliferation of four tested tumor cells.

View Article and Find Full Text PDF

Although several high-fidelity SpCas9 variants have been reported, it has been observed that this increased specificity is associated with reduced on-target activity, limiting the applications of the high-fidelity variants when efficient genome editing is required. Here, we developed an improved version of Sniper-Cas9, Sniper2L, which represents an exception to this trade-off trend as it showed higher specificity with retained high activity. We evaluated Sniper2L activities at a large number of target sequences and developed DeepSniper, a deep learning model that can predict the activity of Sniper2L.

View Article and Find Full Text PDF

We present a novel genome-wide off-target prediction method named Extru-seq and compare it with cell-based (GUIDE-seq), in vitro (Digenome-seq), and in silico methods using promiscuous guide RNAs with large numbers of valid off-target sites. Extru-seq demonstrates a high validation rate and retention of information about the intracellular environment, both beneficial characteristics of cell-based methods. Extru-seq also shows a low miss rate and could easily be performed in clinically relevant cell types with little optimization, which are major positive features of the in vitro methods.

View Article and Find Full Text PDF

Prime editors (PEs) are powerful tools that widen the possibilities for sequence modifications during genome editing. Although methods based on the analysis of Cas9 nuclease or nickase activity have been used to predict genome-wide off-target activities of PEs, no tool that directly uses PEs for this purpose has been reported yet. In this study, we present a cell-based assay, named TAgmentation of Prime Editor sequencing (TAPE-seq), that provides genome-wide off-target candidates for PEs.

View Article and Find Full Text PDF

Based on the well-known cytotoxicity of indole compounds, we used the 'Fisher indole synthesis' method to introduce appropriately substituted indole rings into panaxadiol (PD), generating eighteen novel Panaxadiol indole derivatives. Six human cancer cell lines (A549, HepG-2, HCT-116, SGC-7901, MDA-MB-231, PC-3 cells) and one normal ovarian cell lines (IOSE144) were designed to evaluate the anti-proliferative activity of the PD derivatives. The results showed that the majority of PD derivatives showed enhanced anti-proliferative activity, when compared with PD, with P-Methylindolo-PD exhibiting the highest cytotoxicity.

View Article and Find Full Text PDF

Ginsenoside Re is a protopanaxatriol-type saponin extracted from the berry, leaf, stem, flower bud, and root of . In recent years, ginsenoside Re (Re) has been attracting attention as a dietary phytochemical. In this review, studies on Re were compiled by searching a combination of keywords, namely "pharmacology," "pharmacokinetics," and "toxicology," in the Google Scholar, NCBI, PubMed, and Web of Science databases.

View Article and Find Full Text PDF

The development of a compliant neural probe is necessary to achieve chronic implantation with minimal signal loss. Although fiber-based neural probes fabricated by the thermal drawing process have been proposed as a solution, their long-term effect on the brain has not been thoroughly investigated. Here, we examined the mechanical interaction of thermally drawn fiber implants with neural tissue through computational and histological analyses.

View Article and Find Full Text PDF

Schizophrenia is a severe mental disorder with an unclear pathophysiology. Increased expression of the immune gene C4 has been linked to a greater risk of developing schizophrenia; however, it is not known whether C4 plays a causative role in this brain disorder. Using confocal imaging and whole-cell electrophysiology, we demonstrate that overexpression of C4 in mouse prefrontal cortex neurons leads to perturbations in dendritic spine development and hypoconnectivity, which mirror neuropathologies found in schizophrenia patients.

View Article and Find Full Text PDF

Cas9 has made a wide range of genomic manipulation possible. However, its specificity continues to be a challenge. Non-canonical gRNAs and new engineered variants of Cas9 have been developed to improve specificity, but at the cost of the on-target activity.

View Article and Find Full Text PDF

The development of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) into therapeutic modalities requires the avoidance of its potentially deleterious off-target effects. Several methods have been devised to reduce such effects. Here, we present an Escherichia coli-based directed evolution method called Sniper-screen to obtain a Cas9 variant with optimized specificity and retained on-target activity, called Sniper-Cas9.

View Article and Find Full Text PDF

The use of CRISPR-Cas9 as a therapeutic reagent is hampered by its off-target effects. Although rationally designed S. pyogenes Cas9 (SpCas9) variants that display higher specificities than the wild-type SpCas9 protein are available, these attenuated Cas9 variants are often poorly efficient in human cells.

View Article and Find Full Text PDF

In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-CL(-1), respectively, accounting for 6.

View Article and Find Full Text PDF

Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations.

View Article and Find Full Text PDF

We report here a new small molecule fluorogen and RNA aptamer pair for RNA labeling. The small-molecule fluorogen is designed on the basis of fluorescently quenched sulforhodamine dye. The SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedure and fluorescence screening in E.

View Article and Find Full Text PDF

Geldanamycin and its analogs are important anticancer agents that inhibit the newly targeted, heat-shock protein (Hsp) 90, which is a chaperone protein in eukaryotic cells. To resolve which geldanamycin biosynthetic genes are responsible for particular post-polyketide synthase (PKS) processing steps and in which order the reactions occur, we individually inactivated candidate genes in Streptomyces hygroscopicus subsp. duamyceticus JCM4427, and isolated and elucidated the structures of intermediates from each mutant.

View Article and Find Full Text PDF

Many enzymes use metal ions within their active sites to achieve enormous rate acceleration. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s). The three-dimensional arrangement determined by X-ray crystallography provides a powerful starting point for identifying ground state interactions, but only functional studies can establish and interrogate transition state interactions.

View Article and Find Full Text PDF

A new quinazolinedione alkaloid, wuchuyuamide IV (1) was isolated from the fruits of Evodia officinalis.1 showed moderate cytotoxicity against Hela and HT1080 cell lines.

View Article and Find Full Text PDF