The Newton-Raphson method is a fundamental root-finding technique with numerous applications in physics. In this study, we propose a parameterized variant of the Newton-Raphson method, inspired by principles from physics. Through analytical and empirical validation, we demonstrate that this approach offers increased robustness and faster convergence during root-finding iterations.
View Article and Find Full Text PDFThe Newton-Raphson method is a fundamental root-finding technique with numerous applications in physics. In this study, we propose a parameterized variant of the Newton-Raphson method, inspired by principles from physics. Through analytical and empirical validation, we demonstrate that this novel approach offers increased robustness and faster convergence during root-finding iterations.
View Article and Find Full Text PDFMirror descent is an elegant optimization technique that leverages a dual space of parametric models to perform gradient descent. While originally developed for convex optimization, it has increasingly been applied in the field of machine learning. In this study, we propose a novel approach for using mirror descent to initialize the parameters of neural networks.
View Article and Find Full Text PDFThe success of machine learning has resulted from its structured representation of data. Similar data have close internal representations as compressed codes for classification or emerged labels for clustering. We observe that the frequency of internal codes or labels follows power laws in both supervised and unsupervised learning models.
View Article and Find Full Text PDFInferring dynamics from time series is an important objective in data analysis. In particular, it is challenging to infer stochastic dynamics given incomplete data. We propose an expectation maximization (EM) algorithm that iterates between alternating two steps: E-step restores missing data points, while M-step infers an underlying network model from the restored data.
View Article and Find Full Text PDFDeep learning methods have had outstanding performances in various fields. A fundamental query is why they are so effective. Information theory provides a potential answer by interpreting the learning process as the information transmission and compression of data.
View Article and Find Full Text PDFMaximum likelihood estimation (MLE) is fundamental to system inference for stochastic systems. In some generality, MLE will converge to the correct model in the infinite data limit. In the context of physical approaches to system inference, such as Boltzmann machines, MLE requires the arduous computation of partition functions summing over all configurations, both observed and unobserved.
View Article and Find Full Text PDFMultiple organs in a living system respond to environmental changes, and the signals from the organs regulate the physiological environment. Inspired by this biological feedback, we propose a simple autonomous system of active rotators to explain how multiple units are synchronized under a fluctuating environment. We find that the feedback via an environment can entrain rotators to have synchronous phases for specific conditions.
View Article and Find Full Text PDFControlling the excess and shortage of energy is a fundamental task for living organisms. Diabetes is a representative metabolic disease caused by the malfunction of energy homeostasis. The islets of Langerhans in the pancreas release long-range messengers, hormones, into the blood to regulate the homeostasis of the primary energy fuel, glucose.
View Article and Find Full Text PDFThe explosion of activity in finding interactions in complex systems is driven by availability of copious observations of complex natural systems. However, such systems, e.g.
View Article and Find Full Text PDFThe fundamental problem in modeling complex phenomena such as human perception using probabilistic methods is that of deducing a stochastic model of interactions between the constituents of a system from observed configurations. Even in this era of big data, the complexity of the systems being modeled implies that inference methods must be effective in the difficult regimes of small sample sizes and large coupling variability. Thus, model inference by means of minimization of a cost function requires additional assumptions such as sparsity of interactions to avoid overfitting.
View Article and Find Full Text PDFThe molecular recognition of T-cell receptors is the hallmark of the adaptive immunity. Given the finiteness of the T-cell repertoire, individual T-cell receptors are necessary to be cross-reactive to multiple antigenic peptides. In this study, we quantify the variability of the cross-reactivity by using a string model that estimates the binding affinity between two sequences of amino acids.
View Article and Find Full Text PDFPancreatic islets can adapt to oscillatory glucose to produce synchronous insulin pulses. Can islets adapt to other oscillatory stimuli, specifically insulin? To answer this question, we stimulated islets with pulses of exogenous insulin and measured their Ca2+ oscillations. We observed that sufficiently high insulin (> 500 nM) with an optimal pulse period (~ 4 min) could make islets to produce synchronous Ca2+ oscillations.
View Article and Find Full Text PDFWe study the global synchronization of hierarchically-organized Stuart-Landau oscillators, where each subsystem consists of three oscillators with activity-dependent couplings. We considered all possible coupling signs between the three oscillators, and found that they can generate different numbers of phase attractors depending on the network motif. Here, the subsystems are coupled through mean activities of total oscillators.
View Article and Find Full Text PDFCounter-regulatory elements maintain dynamic equilibrium ubiquitously in living systems. The most prominent example, which is critical to mammalian survival, is that of pancreatic α and β cells producing glucagon and insulin for glucose homeostasis. These cells are not found in a single gland but are dispersed in multiple micro-organs known as the islets of Langerhans.
View Article and Find Full Text PDFInsulin is secreted in a pulsatile manner from multiple micro-organs called the islets of Langerhans. The amplitude and phase (shape) of insulin secretion are modulated by numerous factors including glucose. The role of phase modulation in glucose homeostasis is not well understood compared to the obvious contribution of amplitude modulation.
View Article and Find Full Text PDFWe examine the Jarzynski equality for a quenching process across the critical point of second-order phase transitions, where absolute irreversibility and the effect of finite-sampling of the initial equilibrium distribution arise in a single setup with equal significance. We consider the Ising model as a prototypical example for spontaneous symmetry breaking and take into account the finite sampling issue by introducing a tolerance parameter. The initially ordered spins become disordered by quenching the ferromagnetic coupling constant.
View Article and Find Full Text PDFPancreatic islets are functional units involved in glucose homeostasis. The multicellular system comprises three main cell types; β and α cells reciprocally decrease and increase blood glucose by producing insulin and glucagon pulses, while the role of δ cells is less clear. Although their spatial organization and the paracrine/autocrine interactions between them have been extensively studied, the functional implications of the design principles are still lacking.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2015
We consider a system of conformist and contrarian oscillators coupled locally in a three-dimensional cubic lattice and explore collective behavior of the system. The conformist oscillators attractively interact with the neighbor oscillators and therefore tend to be aligned with the neighbors' phase. The contrarian oscillators interact repulsively with the neighbors and therefore tend to be out of phase with them.
View Article and Find Full Text PDFNon-obese diabetic (NOD) mice are a widely-used model oftype1 diabetes (T1D). However, not all animals develop overt diabetes. This study examined the circulating metabolomic profiles of NOD mice progressing or not progressing to T1D.
View Article and Find Full Text PDFMorphogenesis, spontaneous formation of organism structure, is essential for life. In the pancreas, endocrine α, β, and δ cells are clustered to form islets of Langerhans, the critical micro-organ for glucose homeostasis. The spatial organization of endocrine cells in islets looks different between species.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2013
We study the self-organization of binary cell mixtures in finite cubic lattices. Depending on the relative attractions between cell types, the binary mixture model generates four distinct cellular associations: complete sorting, shell-core sorting, partial mixing, and complete mixing of heterotypic cells. At the boundaries between these four phases, the cellular associations show large variations, representing phase transitions.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2013
Pancreatic islets, controlling glucose homeostasis, consist of α, β, and δ cells. It has been observed that α and β cells generate out-of-phase synchronization in the release of glucagon and insulin, counter-regulatory hormones for increasing and decreasing glucose levels, while β and δ cells produce in-phase synchronization in the release of the insulin and somatostatin. Pieces of interactions between the islet cells have been observed for a long time, although their physiological role as a whole has not been explored yet.
View Article and Find Full Text PDFHere we present a convenient method for easy hand selection of enzymatically isolated small tissues such as islets of Langerhans. Islets are continuously collected in a micropipette tip connected to a peristaltic pump. After entering the conical micropipette tip, the islets are quickly dragged up by solution flow, but this movement subsequently decreases as the flow rate decreases.
View Article and Find Full Text PDFWhile regional heterogeneity in islet distribution has been well studied in rodents, less is known about human pancreatic histology. To fill gaps in our understanding, regional differences in the adult human pancreas were quantitatively analyzed including the pathogenesis of type 2 diabetes (T2D). Cadaveric pancreas specimens were collected from the head, body and tail regions of each donor, including subjects with no history of diabetes or pancreatic diseases (n = 23) as well as patients with T2D (n = 12).
View Article and Find Full Text PDF