Soluble oligomers of human islet amyloid polypeptide (h-IAPP) are believed to be the pathogenic species for type 2 diabetes mellitus. In search of the peptide-cleavage agent cleaving oligomers of h-IAPP with low affinity for polymeric aggregates of h-IAPP, a chemical library was constructed by using the Ugi condensation. From the library, a Co(III) complex was discovered to cleave soluble oligomers of h-IAPP in the presence of polymeric aggregates of h-IAPP without being captured by the aggregates considerably.
View Article and Find Full Text PDFOligomers of human islet amyloid polypeptide (h-IAPP) are believed to be the pathogenic species for type 2 diabetes mellitus. Peptide-cleaving agents selective for oligomers of h-IAPP were synthesized by using quinoxaline derivatives as recognition sites attached to the Co(III) complex of cyclen in this study. When the initial concentration of h-IAPP was lowered from 4.
View Article and Find Full Text PDFThe Co(III) complex of 1,4,7,10-tetraazacyclododecane has been employed as the catalytic center of target-selective peptide-cleaving catalysts in previous studies. As new chelating ligands for the Co(III) ion in the peptide-cleaving catalysts, 1-oxo-4,7,10-triazacyclodedecane, 1-aryl-1,4,7,10-tetraazacyclodecane, and 7-aryl-1-oxo-4,7,10-triazacyclodecane were examined in the present study. A chemical library comprising 612 derivatives of the Co(III) complex of the new chelating ligands was constructed.
View Article and Find Full Text PDFDerivatives of the Co(III) complex of 1,4,7,10-tetraazacyclododecane (cyclen) with various organic pendants have been reported as target-selective peptide-cleaving catalysts, which can be exploited as catalytic drugs. In order to provide a firm basis for the catalytic drugs based on Co(III)cyclen, the ability of the Co(III)cyclen-containing peptide-cleaving catalysts to penetrate animal cells such as mouse fibroblast NIH-3T 3 or human embryonic kidney (HEK) 293 cells is demonstrated in the present study. Since the catalysts destroy pathogenic proteins for amyloidoses, results of the present study are expected to initiate extensive efforts to obtain therapeutically safe catalytic drugs for amyloidoses such as Alzheimer's disease, type 2 diabetes mellitus, Parkinson's disease, Huntington's disease, mad cow disease, and so on.
View Article and Find Full Text PDFTo design soluble artificial proteases that cleave peptide backbones of a wide range of proteins with high reactivity, artificial active sites comprising the Cu(II) complex of 1-oxa-4,7,10-triazacyclodedecane (oxacyclen) and the aldehyde group were synthesized. The aldehyde group was employed as the binding site in view of its ability to reversibly form imine bonds with ammonium groups exposed on the surfaces of proteins, and Cu(II) oxacyclen was exploited as the catalytic group for peptide hydrolysis. The artificial metalloproteases synthesized in the present study cleaved all of the protein substrates examined (albumin, gamma-globulin, myoglobin, and lysozyme).
View Article and Find Full Text PDFMultifunctional silica nanotubes (SNTs) are being widely used for many biomedical applications due to their structural benefits. Controlling the structure of the open end of an SNT is a crucial step for drug/gene delivery and for fabrication of multifunctional SNTs. We developed a mechanical capsulation method to fabricate caps at the ends of SNTs.
View Article and Find Full Text PDFFlavins, comprising flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and riboflavin (RF, vitamin B(2)), play important roles in numerous redox reactions such as those taking place in the electron-transfer chains of mitochondria in all eukaryotes and of plastids in plants. A selective chemosensor for flavins would be useful not only in the investigation of metabolic processes but also in the diagnosis of diseases related to flavins; such a sensor is presently unavailable. Herein, we report the first bifunctional chemosensor (PTZ-DPA) for flavins.
View Article and Find Full Text PDFThis tutorial review describes the evolution of peptide-hydrolyzing metal catalysts towards artificial metalloproteases cleaving target proteins selectively. The catalytic cleavage of the backbone of a protein related to a disease may effect a cure. In particular, a new therapeutic option for amyloid diseases such as Alzheimer's disease, diabetes and Parkinson's disease has been presented.
View Article and Find Full Text PDFCatalytic drugs based on target-selective artificial proteases have been proposed as a new paradigm in drug design. Peptide-cleavage agents selective for pathogenic proteins of Alzheimer's disease, type 2 diabetes mellitus or Parkinson's disease have been prepared using the Co(III) aqua complex (Co(III)cyclen) of 1,4,7,10-tetraazacyclododecane as the catalytic center. In the present study, the Co(III) aqua complex (Co(III)oxacyclen) of 1-oxa-4,7,10-triazacyclododecane was examined in search of an improved catalytic center for peptide-cleavage agents.
View Article and Find Full Text PDFSoluble oligomers of human islet amyloid polypeptide (h-IAPP) are implicated in the initiation of beta-cell apoptosis leading to type 2 diabetes mellitus (T2DM). Cleavage of the h-IAPP included in an oligomer may provide a novel method for reducing the level of h-IAPP oligomers, offering a new therapeutic option for T2DM. From the combinatorial library of triazine derivatives prepared by exploiting the Co(III) complex of cyclen as the cleavage center for peptide bonds, eight compounds were selected as cleavage agents for oligomers of h-IAPP.
View Article and Find Full Text PDFCatalytic cleavage of the backbone of a protein related to a disease may cure the disease. Owing to the catalytic nature of the protein inactivation, the drug dosage and the side effects can be reduced with the catalytic drugs. Catalytic drugs can be designed even for proteins lacking active sites.
View Article and Find Full Text PDFProteolytic activity of the Cu(II) complex of 1-oxa-4,7,10-triazacyclododecane (oxacyclen) was compared with that of the Cu(II) complex of 1,4,7,10-tetraazacyclododecane by using albumin, gamma-globulin, and myoglobin as substrates. Values of kcat/Km were greater for Cu(II)oxacyclen by 40-80 times. The enhanced activity is attributed to the increased Lewis acidity of Cu(II) due to substitution of one nitrogen donor atom with oxygen.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2008
To provide a firm basis for the new paradigm of drug discovery based on catalysts for oxidative cleavage of N-terminal aspartate (Asp) residues of oligopeptides, oligopeptide-cleaving catalysts were searched by using melanin-concentrating hormone (MCH) as the substrate. MCH is a target for designing drugs to reduce obesity. Catalyst candidates containing the Co(III) complex of cyclen as the catalytic center were prepared by multicomponent condensation reactions.
View Article and Find Full Text PDFCrystal structure and activation entropy data indicate that H-bond directed diaza-Cope rearrangement of chiral diimines takes place with a high degree of preorganization. CD spectroscopy and HPLC data show that there is inversion of stereochemistry for the reaction with excellent enantioselectivity.
View Article and Find Full Text PDFCytochrome P450 (CYP) 3A4 is responsible for the oxidative degradation of more than 50% of clinically used drugs. By means of molecular dynamics simulations with the newly developed force field parameters for the heme-thiolate group and its dioxygen adduct, we examine the differences in structural and dynamic properties between CYP3A4 in the resting form and its complexes with the substrate progesterone and the inhibitor metyrapone. The results indicate that the broad substrate specificity of CYP3A4 stems from the malleability of a loop (residues 211-218) that resides in the vicinity of the channel connecting the active site and bulk solvent.
View Article and Find Full Text PDFTo design artificial proteases that cleave peptide backbones of a wide range of proteins at selected sites, artificial active sites comprising the Cu(II) complex of cyclen (Cu(II)Cyc) and aldehyde group were synthesized on a cross-linked polystyrene. The aldehyde group was employed as the binding site in view of its ability of reversible formation of imine bonds with epsilon-amino groups of Lys residues exposed on the surface of proteins and Cu(II)Cyc as the catalytic group for peptide hydrolysis. The two polymeric artificial metalloproteases synthesized in the present study cleaved all of the protein substrates examined (myoglobin, gamma-globulin, bovine serum albumin, human serum albumin, lysozyme, and ovalbumin), manifesting saturation kinetic behavior.
View Article and Find Full Text PDFTo provide a firm basis for the new paradigm of drug discovery based on peptide-cleaving catalysts, oligopeptide-cleaving catalysts were searched for by using human angiotensin I (Ang-I) and angiotensin II (Ang-II) as the substrates. Catalyst candidates containing the Co(III) complex of cyclen as the catalytic center were prepared by multicomponent condensation reactions. From two types of chemical libraries containing about 3,600 catalyst candidates, two compounds [SS-Co(III)X and S-Co(III)Y] were selected as the most active catalysts.
View Article and Find Full Text PDFA peptide-cleaving catalyst selective for peptide deformylase (PDF) was obtained from a library containing about 15 000 catalyst candidates. The catalyst cleaved the polypeptide backbone of PDF at Gln(152)-Arg(153). Docking simulations suggested multiple modes of interactions in the complex formed between the catalyst and PDF.
View Article and Find Full Text PDFMononuclear, dinuclear, and tetranuclear artificial metalloproteases were prepared by attaching respective catalytic modules containing the Cu(II) complex of cyclen (Cu(II)Cyc) to a derivative of cross-linked polystyrene. The polymeric artificial metalloproteases effectively cleaved peptide bonds of myoglobin (Mb) by hydrolysis. The proteolytic activity increased considerably as the catalytic group density was raised: the ratio of k(cat)/K(m) was 1:13:100 for the mono-, di-, and tetranuclear catalysts.
View Article and Find Full Text PDFEffective artificial enzymes have been designed by adopting macromolecular systems for catalyst-substrate complexes. Artificial active sites comprising two or more organic functional groups were built on macromolecular backbones, leading to several types of organic artificial proteases. The activity of metal centers for peptide or DNA hydrolysis was greatly enhanced by attachment to polystyrene, leading to artificial metallopeptidases with substrate selectivity as well as artificial metallonucleases with high catalytic activity for double stranded DNA.
View Article and Find Full Text PDFA protein-cleaving catalyst highly selective for a disease-related protein can be used as a catalytic drug. As the first protein-cleaving catalyst selective for a protein substrate, a catalyst for myoglobin (Mb) was designed by attaching the Cu(II) or Co(III) complex of cyclen to a binding site searched by a combinatorial method using peptide nucleic acid monomers as building units. Various linkers were inserted between the catalytic Co(III) center and the binding site of the Mb-cleaving catalyst.
View Article and Find Full Text PDFA protein-cleaving catalyst specific for a disease-related protein can be used as a catalytic drug. As the first protein-cleaving catalyst selective for a protein substrate, a catalyst for myoglobin was designed by attaching Cu(II) or Co(III) complex of cyclen to a binding site searched by a combinatorial method using peptide nucleic acid monomers as building units. [reaction: see text]
View Article and Find Full Text PDFOrganic artificial proteases with broad substrate specificity were synthesized by covering the surface of silica gel with aldehyde and the functional groups present in amino acids. The artificial proteases hydrolyzed ovalbumin, albumin, hemoglobin, gamma-globulin with half-lives as short as 50 min at 25 degrees C or 7 min at 50 degrees C.
View Article and Find Full Text PDFAspartic protease analogues synthesized by covering the surface of silica gel with carboxyl groups effectively hydrolyzed hemoglobin and gamma-globulin. It is proposed that the carboxyl group is involved in both complexation of the protein substrate and the catalytic cleavage of the peptide bonds of the complexed proteins.
View Article and Find Full Text PDF