Publications by authors named "Junghee Yang"

In this study, we report a one-step direct synthesis of molybdenum disulfide (MoS) and tungsten disulfide (WS) quantum dots (QDs) through a solvothermal reaction using only alcohol solvents and efficient () decompositions as photocatalytic antibacterial agents under visible light irradiation. The solvothermal reaction gives the scission of molybdenum-sulfur (Mo-S) and tungsten-sulfur (W-S) bonding during the synthesis of MoS and WS QDs. Using only alcohol solvent does not require a residue purification process necessary for metal intercalation.

View Article and Find Full Text PDF

A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased.

View Article and Find Full Text PDF

Encapsulation of electronic devices such as dye-sensitized solar cells (DSSCs) is prone to degradation under normal atmospheric conditions, even with hermetic barriers on the metal electrodes. Overcoming this problem is crucial to increasing DSSC lifetimes and making them commercially viable. Herein, we report a new impermeable flexible liquid barrier film using polyvinyl alcohol (PVA) and partially reduced graphene oxide (PrGO), which dramatically enhances the lifetime of Ag metal electrodes (typically used in DSSCs) immersed in a highly acidic iodolyte solution.

View Article and Find Full Text PDF

The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly.

View Article and Find Full Text PDF

To prepare carbon-based fluorescent materials such as graphene quantum dots (GQDs), new and effective methods are needed to convert one-dimensional (1D) or two-dimensional (2D) carbon materials to 0D GQDs. Here, we report a novel acid-free and oxone oxidant-assisted solvothermal synthesis of GQDs using various natural carbon resources including graphite (G), multiwall carbon nanotubes (M), carbon fibers (CF), and charcoal (C). This acid-free method, not requiring the neutralization process of strong acids, exhibits a simple and eco-friendly purification process and also represents a recycling production process, together with mass production and high yield.

View Article and Find Full Text PDF

This study aimed to demonstrate that curcumin (Cur)-containing graphene composites have high anticancer activity. Specifically, graphene-derivatives were used as nanovectors for the delivery of the hydrophobic anticancer drug Cur based on pH dependence. Different Cur-graphene composites were prepared based on polar interactions between Cur and the number of oxygen-containing functional groups of respective starting materials.

View Article and Find Full Text PDF

One of the most efficient and straightforward methods for production of graphene quantum dots (GQDs) could be their direct preparation from graphite powder by one-pot synthesis using high-powered microwave irradiation. It is believed that in this way, graphite can be multiply broken by repeated redox reactions, which leads to a high yield and mass production.

View Article and Find Full Text PDF