Publications by authors named "Junghae Suh"

Spinal motor neuron (MN) dysfunction is the cause of a number of clinically significant movement disorders. Despite the recent approval of gene therapeutics targeting these MN-related disorders, there are no viral delivery mechanisms that achieve MN-restricted transgene expression. In this study, chromatin accessibility profiling of genetically defined mouse MNs was used to identify candidate cis-regulatory elements (CREs) capable of driving MN-selective gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers have discovered specific cis-regulatory elements (CREs) that can achieve spinal motor neuron-specific gene expression while minimizing effects on other nerve cells.
  • * One identified CRE has been effective in both mice and non-human primates, indicating its potential use for developing targeted gene therapies in humans.
View Article and Find Full Text PDF

Recombinant adeno-associated virus (AAV)-mediated degeneration of sensory neurons in the dorsal root ganglia (DRG) and trigeminal ganglia (TG) has been observed in non-human primates (NHPs) following intravenous (IV) and intrathecal (IT) delivery. Administration of recombinant AAV encoding a human protein transgene via a single intra-cisterna magna (ICM) injection in New Zealand white rabbits resulted in histopathology changes very similar to NHPs: mononuclear cell infiltration, degeneration/necrosis of sensory neurons, and nerve fiber degeneration of sensory tracts in the spinal cord and of multiple nerves. AAV-associated clinical signs and incidence/severity of histologic findings indicated that rabbits were equally or more sensitive than NHPs to sensory neuron damage.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) vector-based gene therapies can be applied to a wide range of diseases. AAV expression can last for months to years, but vector re-administration may be necessary to achieve life-long treatment. Unfortunately, immune responses against these vectors are potentiated after the first administration, preventing the clinical use of repeated administration of AAVs.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) is a promising gene therapy vector, but questions remain regarding mechanisms of basic viral functions. We previously showed that a serine/threonine (S/T) triplet motif and its flanking residues, located in the overlapping N-terminus of VP1/VP2 and highly conserved across most AAV serotypes, are critical for viral transcript production in vitro. Here we generate a panel of S/T triplet mutants in AAV serotypes 2, 4, and 9 and characterize their behaviors in vitro and in vivo using next generation sequencing.

View Article and Find Full Text PDF

Adeno-associated virus' (AAV) relatively simple structure makes it accommodating for engineering into controllable delivery platforms. Cancer, such as pancreatic ductal adenocarcinoma (PDAC), are often characterized by upregulation of membrane-bound proteins, such as MMP-14, that propagate survival integrin signaling. In order to target tumors, we have engineered an MMP-14 protease-activatable AAV vector that responds to both membrane-bound and extracellularly active MMPs.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) is a promising gene therapy vector because of its efficient gene delivery and relatively mild immunogenicity. To improve delivery target specificity, researchers use combinatorial and rational library design strategies to generate novel AAV capsid variants. These approaches frequently propose high proportions of nonforming or noninfective capsid protein sequences that reduce the effective depth of synthesized vector DNA libraries, thereby raising the discovery cost of novel vectors.

View Article and Find Full Text PDF

Solid-state nanopore (SSN)-based analytical methods have found abundant use in genomics and proteomics with fledgling contributions to virology - a clinically critical field with emphasis on both infectious and designer-drug carriers. Here we demonstrate the ability of SSN to successfully discriminate adeno-associated viruses (AAVs) based on their genetic cargo [double-stranded DNA (AAVdsDNA), single-stranded DNA (AAVssDNA) or none (AAVempty)], devoid of digestion steps, through nanopore-induced electro-deformation (characterized by relative current change; ΔI/I0). The deformation order was found to be AAVempty > AAVssDNA > AAVdsDNA.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) is a promising vector for gene therapy, but its broad tropism can be detrimental if the transgene being delivered is harmful when expressed ubiquitously in the body, i.e. in non-target tissues.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) vectors are currently investigated as gene transfer agents for the treatment of a variety of diseases. However, activation of the host immune response upon vector administration limits the use of AAV in the clinical setting. To decrease host detection of AAVs, we tested the CD47-based "don't-eat-me" signal in the context of the AAV capsid.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) is one of the most researched, clinically utilized gene therapy vectors. Though clinical success has been achieved, transgene delivery and expression may be hindered by cellular and tissue barriers. Understanding the role of receptor binding, entry, endosomal escape, cytoplasmic and nuclear trafficking, capsid uncoating, and viral transcription in therapeutic efficacy is paramount.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) is widely favored as a gene therapy vector, tested in over 200 clinical trials internationally. To improve targeted delivery a variety of genetic capsid modifications, such as insertion of targeting proteins/peptides into the capsid shell, have been explored with some success but larger insertions often have unpredictable deleterious impacts on capsid formation and gene delivery. Here, we demonstrate a modular platform for the integration of exogenous peptides and proteins onto the AAV capsid post-translationally while preserving vector functionality.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) consists of a simple genome, infects mammalian cells, displays nonpathogenicity in humans, and spans an array of serotypes and variants bearing distinct tissue tropisms. These attributes lend AAV tremendous promise as a gene delivery vector, further substantiated by its extensive testing in human clinical trials. Rational design approaches to capsid engineering leverage current scientific knowledge of AAV to further modulate, enhance and optimize the performance of the vectors.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) has emerged as a promising gene delivery vector because of its non-pathogenicity, simple structure and genome, and low immunogenicity compared to other viruses. However, its adoption as a safe and effective delivery vector for certain diseases relies on altering its tropism to deliver transgenes to desired cell populations. To this end, we have developed a protease-activatable AAV vector, named provector, that responds to elevated extracellular protease activity commonly found in diseased tissue microenvironments.

View Article and Find Full Text PDF

Genetically engineered mouse models (GEMMs) that recapitulate the major genetic drivers in pancreatic ductal adenocarcinoma (PDAC) have provided unprecedented insights into the pathogenesis of this lethal neoplasm. Nonetheless, generating an autochthonous model is an expensive, time consuming and labor intensive process, particularly when tissue specific expression or deletion of compound alleles are involved. In addition, many of the current PDAC GEMMs cause embryonic, pancreas-wide activation or loss of driver alleles, neither of which reflects the cognate human disease scenario.

View Article and Find Full Text PDF

Adeno-associated viruses (AAVs) are promising gene therapy vectors but may exhibit off-target delivery due to broad tissue tropism. We recently developed a synthetic protease-activatable AAV vector, named provector, that transduces cells preferentially in environments rich in matrix metalloproteinases (MMPs) which are elevated in a variety of diseases, including various cancers and heart diseases. The provector displays peptide locks made up of MMP recognition sites flanking an inactivating sequence (IS) composed of four aspartic acid residues (D4).

View Article and Find Full Text PDF

The fields of physical, chemical, and synthetic virology work in partnership to reprogram viruses as controllable nanodevices. Physical virology provides the fundamental biophysical understanding of how virus capsids assemble, disassemble, display metastability, and assume various configurations. Chemical virology considers the virus capsid as a chemically addressable structure, providing chemical pathways to modify the capsid exterior, interior, and subunit interfaces.

View Article and Find Full Text PDF

Reverse transduction, also known as substrate-mediated gene delivery, is a strategy in which viral vectors are first coated onto a surface that subsequently comes into contact with mammalian cells. The cells internalize the surface-attached vectors, resulting in transgene expression. We hypothesized that forcing the interaction between cells and adeno-associated virus (AAV) vectors through a reverse transduction format would increase in vitro gene delivery efficiencies of the vectors in transduction-resistant cells.

View Article and Find Full Text PDF

We harnessed an intrinsic activatable peptide display behavior shared by several parvoviruses, including the adeno-associated virus (AAV), in order to design protein-based nanodevices that can carry out an exogenous functional output in response to stimulus detection. Specifically, we generated truncated viral capsid subunits that, when combined with native capsid components into mosaic capsids, can perform robust activatable peptide display. By modulating the ratio of subunits in the mosaic capsid, properties of the activatable peptide display function can be optimized.

View Article and Find Full Text PDF

Virus-based therapies have gained momentum as the next generation of treatments for a variety of serious diseases. In order to make these therapies more controllable, stimulus-responsive viral vectors capable of sensing and responding to specific environmental inputs are currently being developed. A number of viruses naturally respond to endogenous stimuli, such as pH, redox, and proteases, which are present at different concentrations in diseases and at different organ and organelle sites.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-mediated gene transfer is an appealing therapeutic option due to AAV's safety profile. Effective delivery of AAV's genetic cargo to the nucleus, however, requires evasion of host cell barriers, including cellular clearance mechanisms mediated by the lysosome-autophagy system. We used AAV serotype 2 to monitor the autophagic response to cellular internalization of AAV and to characterize the effect of AAV-induced activation of autophagy on transgene expression.

View Article and Find Full Text PDF

In optogenetics, researchers use light and genetically encoded photoreceptors to control biological processes with unmatched precision. However, outside of neuroscience, the impact of optogenetics has been limited by a lack of user-friendly, flexible, accessible hardware. Here, we engineer the Light Plate Apparatus (LPA), a device that can deliver two independent 310 to 1550 nm light signals to each well of a 24-well plate with intensity control over three orders of magnitude and millisecond resolution.

View Article and Find Full Text PDF

Ferroelectric materials, such as tetragonal barium titanate (BaTiO), have been widely used in a variety of areas including bioimaging, biosensing, and high power switching devices. However, conventional methods for the synthesis of tetragonal phase BaTiO usually require toxic organic reagents and high temperature treatments, and are thus not environment-friendly and energy-efficient. Here, we took advantage of the phage display technique to develop a novel strategy for the synthesis of BaTiO nanowires.

View Article and Find Full Text PDF