The transition from planar (2D) to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing.
View Article and Find Full Text PDFThe non-ionizing and penetrative characteristics of terahertz (THz) radiation have recently led to its adoption across a variety of applications. To effectively utilize THz radiation, modulators with precise control are imperative. While most recent THz modulators manipulate the amplitude, frequency, or phase of incident THz radiation, considerably less progress has been made toward THz polarization modulation.
View Article and Find Full Text PDFStrongly-interacting nanomagnetic arrays are ideal systems for exploring reconfigurable magnonics. They provide huge microstate spaces and integrated solutions for storage and neuromorphic computing alongside GHz functionality. These systems may be broadly assessed by their range of reliably accessible states and the strength of magnon coupling phenomena and nonlinearities.
View Article and Find Full Text PDFMagnons, the quantum-mechanical fundamental excitations of magnetic solids, are bosons whose number does not need to be conserved in scattering processes. Microwave-induced parametric magnon processes, often called Suhl instabilities, have been believed to occur in magnetic thin films only, where quasi-continuous magnon bands exist. Here, we reveal the existence of such nonlinear magnon-magnon scattering processes and their coherence in ensembles of magnetic nanostructures known as artificial spin ice.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
Two-dimensional (2D) magnetic van der Waals materials provide a powerful platform for studying the fundamental physics of low-dimensional magnetism, engineering novel magnetic phases, and enabling thin and highly tunable spintronic devices. To realize high-quality and practical devices for such applications, there is a critical need for robust 2D magnets with ordering temperatures above room temperature that can be created via exfoliation. Here, the study of exfoliated flakes of cobalt-substituted FeGeTe (CFGT) exhibiting magnetism above room temperature is reported.
View Article and Find Full Text PDFMagnetic force microscopy (MFM) enables mapping local magnetic fields across a sample surface with nanoscale resolution. To perform MFM, an atomic force microscopy (AFM) probe whose tip has been magnetized vertically (i.e.
View Article and Find Full Text PDFArtificial spin ice (ASI) networks are arrays of nanoscaled magnets that can serve both as models for frustration in atomic spin ice as well as for exploring new spin-wave-based strategies to transmit, process, and store information. Here, we exploit the intricate interplay of the magnetization dynamics of two dissimilar ferromagnetic metals arranged on complementary lattice sites in a square ASI to modulate the spin-wave properties effectively. We show that the interaction between the two sublattices results in unique spectra attributed to each sublattice, and we observe inter- and intralattice dynamics facilitated by the distinct magnetization properties of the two materials.
View Article and Find Full Text PDFWe report broadband ferromagnetic resonance measurements of the in-plane magnetic field response of three- and four-fold symmetric vertices formed by non-contacting permalloy nano-ellipses together with extended lattices constructed from them. Complementing the experimental data with simulations, we are able to show that, as far as the most intense FMR responses are concerned, the spectra of vertices and lattices can largely be interpreted in terms of a superposition of the underlying hysteretic responses of the individual ellipses, as elemental building blocks of the system. This property suggest that it is possible to understand the orientation of the individual magnetic dipole moments in a dipole network in terms of dynamic measurements alone, thereby offering a powerful tool to analyze the alignment statistics in frustrated systems that are exposed to various magnetic histories.
View Article and Find Full Text PDFIn this topical review, we present key results of studies on magnetization dynamics in artificial spin ice (ASI), which are arrays of magnetically interacting nanostructures. Recent experimental and theoretical progress in this emerging area, which is at the boundary between research on frustrated magnetism and high-frequency studies of artificially created nanomagnets, is reviewed. The exploration of ASI structures has revealed fascinating discoveries in correlated spin systems.
View Article and Find Full Text PDFWe show that a femtosecond spin-current pulse can generate terahertz (THz) transients at Rashba interfaces between two nonmagnetic materials. Our results unambiguously demonstrate the importance of the interface in this conversion process that we interpret in terms of the inverse Rashba Edelstein effect, in contrast to the THz emission in the bulk conversion process via the inverse spin-Hall effect. Furthermore, we show that at Rashba interfaces the THz-field amplitude can be controlled by the helicity of the light.
View Article and Find Full Text PDFMagnetic insulators, such as yttrium iron garnet (YFeO), are ideal materials for ultralow power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized YFeO/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in YFeO/Pt nanowires by spin-torque ferromagnetic resonance.
View Article and Find Full Text PDFIn planar structures, the vortex resonance frequency changes little as a function of an in-plane magnetic field as long as the vortex state persists. Altering the topography of the element leads to a vastly different dynamic response that arises due to the local vortex core confinement effect. In this work, we studied the magnetic excitations in non-planar ferromagnetic dots using a broadband microwave spectroscopy technique.
View Article and Find Full Text PDFPhys Rev Lett
February 2016
Because of its transverse nature, spin Hall effects (SHE) provide the possibility to excite and detect spin currents and magnetization dynamics even in magnetic insulators. Magnetic insulators are outstanding materials for the investigation of nonlinear phenomena and for novel low power spintronics applications because of their extremely low Gilbert damping. Here, we report on the direct imaging of electrically driven spin-torque ferromagnetic resonance (ST-FMR) in the ferrimagnetic insulator Y_{3}Fe_{5}O_{12} based on the excitation and detection by SHEs.
View Article and Find Full Text PDFWe investigate the origin of the spin Seebeck effect in yttrium iron garnet (YIG) samples for film thicknesses from 20 nm to 50 μm at room temperature and 50 K. Our results reveal a characteristic increase of the longitudinal spin Seebeck effect amplitude with the thickness of the insulating ferrimagnetic YIG, which levels off at a critical thickness that increases with decreasing temperature. The observed behavior cannot be explained as an interface effect or by variations of the material parameters.
View Article and Find Full Text PDFThe formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally "blow" magnetic skyrmion bubbles from a geometrical constriction.
View Article and Find Full Text PDFWe investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm.
View Article and Find Full Text PDFWhen energy is introduced into a region of matter, it heats up and the local temperature increases. This energy spontaneously diffuses away from the heated region. In general, heat should flow from warmer to cooler regions and it is not possible to externally change the direction of heat conduction.
View Article and Find Full Text PDFWe experimentally show that exchange magnons can be detected by using a combination of spin pumping and the inverse spin-Hall effect proving its wavelength integrating capability down to the submicrometer scale. The magnons were injected in a ferrite yttrium iron garnet film by parametric pumping and the inverse spin-Hall effect voltage was detected in an attached Pt layer. The role of the density, wavelength, and spatial localization of the magnons for the spin pumping efficiency is revealed.
View Article and Find Full Text PDFBrillouin light scattering spectroscopy is a powerful technique for the study of fast magnetization dynamics with both frequency and wavevector resolutions. Here, we report on a distinct improvement of this spectroscopic technique toward two-dimensional wide-range wavevector selectivity in a backward scattering geometry. Spin-wave wavevectors oriented perpendicularly to the bias magnetic field are investigated by tilting the sample within the magnet gap.
View Article and Find Full Text PDF