Introduction: The Q108P pathological variant of the mitochondrial Coiled-Coil-Helix-- Coiled-Coil-Helix Domain-Containing Protein 10 (CHCHD10) has been implicated in amyotrophic lateral sclerosis (ALS). Both the wild-type and CHCHD10Q108P proteins exhibit intrinsically disordered regions, posing challenges for structural studies with conventional experimental tools.
Method: This study presents the foundational characterization of the structural features of CHCHD10Q108P and compares them with those of the wild-type counterpart.
The mitochondria are responsible for producing energy within the cell, and in mitochondrial myopathy, there is a defect in the energy production process. The CHCHD10 gene codes for a protein called coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10), which is found in the mitochondria and is involved in the regulation of mitochondrial function. G58R mutation has been shown to disrupt the normal function of CHCHD10, leading to mitochondrial dysfunction and ultimately to the development of mitochondrial myopathy.
View Article and Find Full Text PDFThe V57E pathological variant of the mitochondrial coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10) plays a role in frontotemporal dementia. The wild-type and V57E mutant CHCHD10 proteins contain intrinsically disordered regions, and therefore, these regions hampered structural characterization of these proteins using conventional experimental tools. For the first time in the literature, we represent that the V57E mutation is pathogenic to mitochondria as it increases mitochondrial superoxide and impairs mitochondrial respiration.
View Article and Find Full Text PDFThe G66V pathological variant of the coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10), mitochondrial, plays a role in Jokela type spinal muscular atrophy. The wild-type and G66V mutant-type CHCHD10 proteins contain intrinsically disordered regions, and therefore, their structural ensemble studies have been experiencing difficulties using conventional tools. Here, we show our results regarding the first characterization of the structural ensemble characteristics of the G66V mutant form of CHCHD10 and the first comparison of these characteristics with the structural ensemble properties of wild-type CHCHD10.
View Article and Find Full Text PDFThe S59L genetic mutation of the mitochondrial coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10) is involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The wild-type and mutant forms of this protein contain intrinsically disordered regions, and their structural characterization has been facing challenges. Here, for the first time in the literature, we present the structural ensemble properties of the wild-type and S59L mutant form of CHCHD10 in an aqueous solution environment at the atomic level with dynamics.
View Article and Find Full Text PDF