Publications by authors named "JungTaek Kang"

Human corneal transplantation is still the only option to restore the function of corneal endothelial cells (CECs). Therefore, there is an urgent need for hCEC delivery systems to replace the human donor cornea. Here, we propose an alginate hydrogel (AH)-based delivery system, where a human fibroblast-derived, decellularized extracellular matrix (ECM) was physically integrated with AH.

View Article and Find Full Text PDF
Article Synopsis
  • Neonatal porcine islet-like cell clusters (NPCCs) from piglets show promise in treating type 1 diabetes in humans, but rejection due to xenoantigens is a major issue.
  • Researchers developed a novel nano-encapsulation method using bifunctional polymersomes (PSomes), which effectively targets and binds NPCCs to enhance transplantation success.
  • By encapsulating triiodothyronine (T3) in PSomes, the study finds improved glucose sensitivity and insulin secretion from NPCCs, suggesting a significant advance in islet cell encapsulation techniques.
View Article and Find Full Text PDF

The direct synthesis of sterically hindered aldehydes is highly challenging. Herein, we report a direct approach to generate such compounds electroreductive cleavage of the C(sp)-O bond of activated alcohols. Under the established reaction conditions, benzylic radical intermediates were efficiently generated.

View Article and Find Full Text PDF

A paired electrochemical method is presented for the one-pot synthesis of γ,δ-unsaturated α-amino esters. The method involves the generation of organozinc reagents through zinc chloride reduction on the nickel cathode and the TEMPO-mediated oxidation of amino esters on the carbon anode. The presence of an ester moiety in the amine substrate was found to be crucial for achieving high diastereoselectivity.

View Article and Find Full Text PDF

Here, we report a transparent, biodegradable, and cell-adhesive carrier that is securely coupled with the extracellular matrix (ECM) for corneal endothelial cell (CEC) transplantation. To fabricate a CEC carrier, poly(lactide--caprolactone) (PLCL) solution was poured onto the decellularized ECM (UMDM) derived from in vitro cultured umbilical cord blood-MSCs. Once completely dried, ECM-PLCL was then peeled off from the substrate.

View Article and Find Full Text PDF

Researches proving methods for nano-encapsulation of neonatal porcine islet-like cell clusters (NPCCs) using polymersomes (PSomes) formed using polymers of polyethylene glycol-block-poly lactide. Herein, our studies present efficient nano-encapsulation procedure with minimal damage and loss of NPCCs.We used N-hydroxysuccinimide (NHS) on the N-terminal of PSomes to induce binding of amine groups in the extracellular matrix surrounding NPCCs.

View Article and Find Full Text PDF

Although islet cell transplantation has emerged as a promising treatment for type 1 diabetes, it remains an unmet clinical application due to the need for immunosuppression to prevent islet elimination and autoimmunity. To solve these problems, we developed novel nanoencapsulation of neonatal porcine islet-like cell clusters (NPCCs) with cell-mimic polymersomes (PSomes) based on PEG-b-PLA (poly(ethylene glycol)-b-poly(dl-lactic acid)). To accomplish this, we first formulated NHS-, NH2-, COOH-, and m(methoxy)-PSomes.

View Article and Find Full Text PDF

Islet xenotransplantation is a promising treatment for type I diabetes. Numerous studies of islet xenotransplantation have used pig-to-nonhuman primate transplantation models. Some studies reported long-term survival and successful function of porcine islets in diabetic monkeys.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic disease with accompanying severe complications. Various animal models, mostly rodents due to availability of genetically modified lines, have been used to investigate the pathophysiology of diabetes. Using pigs for diabetic research can be beneficial because of their similarity in size, pathogenesis pathway, physiology, and metabolism with human.

View Article and Find Full Text PDF

Background: Pigs with SCID can be a useful model in regenerative medicine, xenotransplantation, and cancer cell transplantation studies. Utilizing genome editing technologies such as CRISPR/Cas9 system allows us to generate genetically engineered pigs at a higher efficiency. In this study, we report generation and phenotypic characterization of IL2RG knockout female pigs produced through combination of CRISPR/Cas9 system and SCNT.

View Article and Find Full Text PDF

Recent developments in genome editing technology using meganucleases demonstrate an efficient method of producing gene edited pigs. In this study, we examined the effectiveness of the transcription activator-like effector nuclease (TALEN) system in generating specific mutations on the pig genome. Specific TALEN was designed to induce a double-strand break on exon 9 of the porcine α1,3-galactosyltransferase (GGTA1) gene as it is the main cause of hyperacute rejection after xenotransplantation.

View Article and Find Full Text PDF

Quercetin (QT) and taxifolin (TF) are structurally similar plant-derived flavonoids that have antioxidant properties and act as free radical scavengers. The objective of this study was to investigate effects of QT and TF on nuclear maturation of porcine oocytes. Effects of TF at 0, 1, 10, and 50 μg/mL on oocyte nuclear maturation (polar body extrusion) were investigated.

View Article and Find Full Text PDF

The level of P4 at the time of embryo transfer (ET) is important. P4 concentrations and numbers of corpora lutea for 126 recipients were evaluated. Nuclear transfer embryos were transferred into 126 surrogates.

View Article and Find Full Text PDF

One of the factors that impairs in vitro produced porcine embryos is the oxidative stress that is mainly caused by the imbalance between reactive oxygen species (ROS) generation and antioxidants activity, especially that of glutathione (GSH). Here, we examined the effect of 7,8-dihydroxyflavone (7,8-DHF), a kind of flavonoid antioxidant, on porcine oocyte maturation and its developmental competence. Porcine oocytes were cultured in media supplemented with 0, 1, 5 and 10 μM 7,8-DHF during both in vitro maturation (IVM) and in vitro culture (IVC) after parthenogenetic activation.

View Article and Find Full Text PDF

Quercetin is a plant-derived flavonoid found in fruits or vegetables that has antioxidant properties and acts as a free radical scavenger. We investigated the effects of quercetin on porcine oocyte nuclear maturation and embryonic development after parthenogenetic activation. We then evaluated the antioxidant activities of quercetin by measuring reactive oxygen species (ROS) levels in matured oocytes.

View Article and Find Full Text PDF

Abstract Aberrant epigenetic nuclear reprogramming of somatic nuclei is a major cause of low success in cloning. It has been demonstrated that treatment of histone deacetylase inhibitors (HDACi) enhances developmental potential of somatic cell nuclear transfer (SCNT) embryos by alteration of epigenetic status. The aim of the present study was to investigate the effect of oxamflatin, a novel HDACi, on the developmental competence of porcine SCNT embryos.

View Article and Find Full Text PDF

It is increasingly evident that conditional gene expression in pigs is necessary to make transgenic models. In this study, we investigated conditional expression in porcine fetal fibroblasts using Cre-loxP recombination, a system that has had limited application in large animals to date. Transformed fibroblasts were reprogrammed in enucleated oocytes to support further early embryonic development.

View Article and Find Full Text PDF

In this study, we investigated the effect of two oxygen concentrations (5 and 20%) during in vitro maturation (IVM) and during in vitro culture (IVC) on porcine embryo development and analysed differences in gene expression between cumulus-oocyte complexes matured under 5 or 20% oxygen and the resulting blastocysts cultured under 5% or 20% oxygen following parthenogenetic activation. There was no significant difference in oocyte maturation rate. However, the numbers of resulting blastocysts were significantly increased in the 5% IVC group compared with the 20% IVC group.

View Article and Find Full Text PDF

A recent emerging technology, somatic cell nuclear transfer (SCNT), has been considered for conserving threatened or endangered species. Sapsaree is a native breed in Korea and has been designated as a Natural Monument. The aim of this study was to produce a Sapsaree by SCNT for breed conservation.

View Article and Find Full Text PDF

Melatonin is a multifunctional molecule that mediates several circadian and seasonal processes in animal reproduction. Melatonin and its metabolites are antioxidants and free radical scavengers. We investigated the effects of melatonin on porcine oocyte maturation and embryo development.

View Article and Find Full Text PDF