Publications by authors named "Jung-ren Huang"

We investigate the enzymatic self-catalyzed gelation process in aiyu gel, a natural ion crosslinked polysaccharide gel. The gelation process depends on the concentration ratio () of the crosslinking calcium ions and all galacturonic acid binding sites. The physical gel network formation relies on the assembly of calcium-polysaccharide crosslink bonds.

View Article and Find Full Text PDF

We develop a new, to the best of our knowledge, optical scheme based on second-harmonic generation (SHG) at multiple wavelengths for unequivocal separation of the second-order and the electric-field-induced third-order nonlinear optical contributions from aqueous interfaces. The third-order SHG originating from the field-induced reorientation order of water molecules in the electrical double layer offers an optical label-free and inherent probe to the surface charge density and surface potential in the absolute scales. We verify this wavelength-scanning SHG scheme both theoretically and experimentally, and show that the approach is applicable to water interfaces with bulk ionic strength below 500 µM and can achieve a detection sensitivity for a surface charge density of ∼10/.

View Article and Find Full Text PDF

For dry granular materials falling through a circular exit at the bottom of a silo, no continuous flow can be sustained when the diameter D of the exit is less than five times the characteristic size of the grains. If the bottom of the silo rotates horizontally with respect to the wall of the silo, finite flow rate can be sustained even at small D. We investigate the effect of bottom rotation to the flow rate of monodisperse plastic beads of d=6mm diameter from a cylindrical silo of 19 cm inner diameter.

View Article and Find Full Text PDF

We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.

View Article and Find Full Text PDF

Traditionally, cell biological investigations have mostly employed cells growing on flat, two-dimensional, hard substrates, which are of questionable utility in mimicking microenvironments in vivo. We engineered a novel scaffold to achieve cell culture in the third dimension (3D), where fibroblasts lose the strong dorsal-ventral asymmetry in the distribution of cytoskeletal and adhesion components that is induced by growth on flat substrates. The design principle of our new 3D substrate was inspired by recent advances in engineering cellular microenvironments in which rigidity and the patterning of adhesion ligands were tuned on two-dimensional substrates; the engineered substrates enable independent control over biochemical and mechanical factors to elucidate how mechanical cues affect cellular behaviours.

View Article and Find Full Text PDF

Many types of colloids, including nanoemulsions, which contain sub-100 nm droplets, are dispersed in molecular and micellar solutions, especially surfactant solutions that confer stability. Since it would be desirable to measure the droplet volume fraction ϕ and surfactant concentration C of a nanoemulsion non-destructively, and since the droplet and surfactant structures are significantly smaller than the shortest wavelengths of visible light, optical refractometry could provide a simple and potentially useful approach. By diluting a silicone oil-in-water nanoemulsion having an unknown ϕ and C with pure water, measuring its refractive index n(ϕ,C) using an Abbé refractometer, and fitting the result using a prediction for n that treats the nanoemulsion as an effective medium, we show that ϕ and C can be deduced accurately over a relatively wide range of compositions.

View Article and Find Full Text PDF