In multicellular organisms, including higher plants, asymmetric cell divisions (ACDs) play a crucial role in generating distinct cell types. The root ground tissue initially has two layers: endodermis (inside) and cortex (outside). In the mature root, the endodermis undergoes additional ACDs to produce the endodermis itself and the middle cortex (MC), located between the endodermis and the pre-existing cortex.
View Article and Find Full Text PDFIn plants, the phloem distributes photosynthetic products for metabolism and storage over long distances. It relies on specialized cells, the sieve elements, which are enucleated and interconnected through large so-called sieve pores in their adjoining cell walls. Reverse genetics identified PECTATE LYASE-LIKE 12 (PLL12) as critical for plant growth and development.
View Article and Find Full Text PDFSingle-cell sequencing has recently allowed the generation of exhaustive root cell atlases. However, some cell types are elusive and remain underrepresented. Here we use a second-generation single-cell approach, where we zoom in on the root transcriptome sorting with specific markers to profile the phloem poles at an unprecedented resolution.
View Article and Find Full Text PDFPlant vasculature consists of two major conductive cell types, xylem tracheary elements and phloem sieve elements (SEs). Both cell types undergo a highly specialized differentiation process. The root meristem of Arabidopsis displays a stereotypical anatomy in which the central vasculature is surrounded by concentric layers of outer tissues.
View Article and Find Full Text PDFTwo major conducting tissues in plants, phloem and xylem, are composed of highly specialized cell types adapted to long distance transport. Sieve elements (SEs) in the phloem display a thick cell wall, callose-rich sieve plates and low cytoplasmic density. SE differentiation is driven by selective autolysis combined with enucleation, after which the plasma membrane and some organelles are retained.
View Article and Find Full Text PDFIn multicellular organisms, controlling the timing and extent of asymmetric cell divisions (ACDs) is crucial for correct patterning. During post-embryonic root development in Arabidopsis thaliana, ground tissue (GT) maturation involves an additional ACD of the endodermis, which generates two different tissues: the endodermis (inner) and the middle cortex (outer). It has been reported that the abscisic acid (ABA) and gibberellin (GA) pathways are involved in middle cortex (MC) formation.
View Article and Find Full Text PDFPhloem, as a major tissue mediating long-distance communication, has been an object of extensive research ever since its structure was first reported in 1837. Functional phloem consists of sieve elements (SEs) and companion cells (CCs). While SEs are enucleated conducting cells in the phloem, CCs are cells with intact cellular components and are known to support the functioning of SEs.
View Article and Find Full Text PDFPhotoassimilates such as sugars are transported through phloem sieve element cells in plants. Adapted for effective transport, sieve elements develop as enucleated living cells. We used electron microscope imaging and three-dimensional reconstruction to follow sieve element morphogenesis in Arabidopsis.
View Article and Find Full Text PDFAbout 200 researchers from around the world attended the Third International Conference on Plant Vascular Biology (PVB 2013) held in July 2013 at the Rantapuisto Conference Center, in Helsinki, Finland (http://www.pvb2013.org).
View Article and Find Full Text PDFSugars play important roles in many aspects of plant growth and development, acting as both energy sources and signaling molecules. With the successful use of genetic approaches, the molecular components involved in sugar signaling have been identified and their regulatory roles in the pathways have been elucidated. Here, we describe novel mutants of Arabidopsis (Arabidopsis thaliana), named glucose insensitive growth (gig), identified by their insensitivity to high-glucose (Glc)-induced growth inhibition.
View Article and Find Full Text PDFThe diterpenoid phytohormone gibberellin (GA) controls diverse developmental processes throughout the plant life cycle. DELLA proteins are master growth repressors that function immediately downstream of the GA receptor to inhibit GA signaling. By doing so, DELLAs also play pivotal roles as integrators of internal developmental signals from multiple hormone pathways and external cues.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2011
During plant development, because no cell movement takes place, control of the timing and extent of cell division and coordination of the direction and extent of cell expansion are particularly important for growth and development. The plant hormone gibberellins (GAs) play key roles in the control of these developmental processes. However, little is known about the molecular components that integrate the generic GA signaling into a specific cell/tissue to coordinate cell division and cell expansion.
View Article and Find Full Text PDFDevelopment of the vascular tissues is a dynamic process that integrates extrinsic and intrinsic factors to control vascular tissue formation throughout the plant life cycle. During vascular tissue formation in Arabidopsis roots, radial and longitudinal signals, including nuclear factors and plant hormones, control the developmental processes involved in the specification, differentiation, and maintenance of the correct cell types. SHR, a GRAS transcription factor, has been known to regulate the specification of the stem cell niche and ground tissue identity in the root meristem in a non-cell-autonomous manner.
View Article and Find Full Text PDFGRAS proteins belong to a plant-specific transcription factor family. Currently, 33 GRAS members including a putative expressed pseudogene have been identified in the Arabidopsis genome. With a reverse genetic approach, we have constructed a "phenome-ready unimutant collection" of the GRAS genes in Arabidopsis thaliana.
View Article and Find Full Text PDF