Previous studies have shown that Notch signaling not only regulates the number of early differentiating neurons, but also maintains proliferating neural precursors in the neural tube. Although it is well known that Notch signaling is closely related to the differentiation of adult neural stem cells, none of transgenic zebrafish provides a tool to figure out the relationship between Notch signaling and the differentiation of neural precursors. The goal of this study was to characterize Her4-positive cells by comparing the expression of a fluorescent Her4 reporter in Tg[her4-dRFP] animals with a GFAP reporter in Tg[gfap-GFP] adult zebrafish.
View Article and Find Full Text PDFIn the central nervous system (CNS), giving rise to the diversity and the complexity of neurons is the spatial and temporal differentiation of neural stem cells and/or neural precursors. Here, we investigated the role of Jagged-mediated Notch signaling in the maintenance and differentiation of progenitor cells during late neurogenesis by analyzing the expression patterns of zebrafish jagged homologues, and by injecting their morpholinos. Expression of both jagged2 and jagged1b mRNA in the CNS suggested that they might be involved in control of differentiating neural progenitors in which they are involved later in development.
View Article and Find Full Text PDF