Publications by authors named "Jung-Sun Heo"

Background: Periodontal ligament stem cells (PDLSCs) have been proposed as therapeutic candidates in periodontal diseases and periodontium defects. Paracrine factors of PDLSCs, namely, secretome, can contribute to tissue regeneration comparable to direct stem cell application. This study explored restoration effects of PDLSC-derived secretome/conditioned medium (PDLSC-CM) on PDLSCs themselves in an inflammatory microenvironment and identified its action mechanisms using proteomics and transcriptomic profiling.

View Article and Find Full Text PDF

Fucoidan, a marine-sulfated polysaccharide derived from brown algae, has been recently spotlighted as a natural biomaterial for use in bone formation and regeneration. Current research explores the osteoinductive and osteoconductive properties of fucoidan-based composites for bone tissue engineering applications. The utility of fucoidan in a bone tissue regeneration environment necessitates a better understanding of how fucoidan regulates osteogenic processes at the molecular level.

View Article and Find Full Text PDF

Graphene oxide (GO) is a biocompatible material considered a favorable stem cell culture substrate. In this study, GO was modified with polydopamine (PDA) to facilitate depositing GO onto a tissue culture polystyrene (PT) surface, and the osteogenic performance of the PDA/GO composite in pluripotent embryonic stem cells (ESCs) was investigated. The surface chemistry of the PDA/GO-coated PT surface was analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Dental disease is one of the most prevalent chronic diseases worldwide, and its expenditure is continuously increasing. Periodontal disease is increasing as a chronic non-communicable disease in adults and older people. Health screening has been shown to be cost-effective and improves the quality of life through the early detection of diseases.

View Article and Find Full Text PDF

Background/objectives: Fucoidan has been focused as a multifunctional therapeutic uses including bone health supplements. However, the critical molecular mechanisms of fucoidan for bone therapeutic agents have not been fully understood. We investigated the osteoinductive effect of fucoidan on periodontal ligament stem cells (PDLSCs) and how this polymer encouraged PDLSC osteogenesis.

View Article and Find Full Text PDF

This study investigated the delivery of S-nitrosothiol (GSNO) as a nitric oxide (NO) donor loaded into calcium carbonate-based mineralized nanoparticles (GSNO-MNPs) to regulate cell signaling pathways for the osteogenic differentiation of mouse embryonic stem cells (ESCs). GSNO-MNPs were prepared by an anionic block copolymer template-mediated calcium carbonate (CaCO) mineralization process in the presence of GSNO. GSNO-MNPs were spherical and had a narrow size distribution.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiO-NPs) are used to improve the aesthetic of toothpaste. While TiO-NPs have been used safely in toothpaste products for a long time, there haven't been studies to determine whether absorption of TiO-NPs by the mucous membranes in the mouth induces pathogenic conditions. Here, we assessed whether TiO-NPs induce cyclooxygenase-2 (COX-2) and investigated the molecular mechanisms underlying the pro-inflammatory effect of TiO-NPs on human periodontal ligament (PDL) cells.

View Article and Find Full Text PDF

Background/aims: This study investigated the effect of inducible nitric oxide synthase-loaded mineralized nanoparticles (iNOS-MNPs) on the osteogenic differentiation of mouse embryonic stem cells (ESCs).

Methods: We prepared iNOS-MNPs using an anionic block copolymer template-mediated calcium carbonate (CaCO3) mineralization process in the presence of iNOS. iNOS-MNPs were spherical and had a narrow size distribution.

View Article and Find Full Text PDF

This study examined the effects of low oxygen tension on the osteogenic differentiation of embryonic stem cells (ESCs) in a three-dimensional culture system. The high expression levels of hypoxia-related proteins hypoxia-inducible factor-1α and vascular endothelial growth factor were first validated in ESCs subjected to hypoxic conditions compared with normoxic controls. The osteogenic differentiation of hypoxic ESCs with either osteogenic or osteogenic factor-free media was subsequently evaluated by measuring alkaline phosphatase activity, intracellular calcium levels, matrix mineralization, and the protein levels of osteogenic markers Runt-related transcription factor 2 and osterix.

View Article and Find Full Text PDF

A mussel-inspired polydopamine (PDA), resulting from the oxidative polymerization of dopamine, was reported to be an attractive substrate for advancing biomaterial applications. Thus, this study determined the osteoconductive/osteoinductive properties of titanium (Ti) surfaces coated with PDA and the facilitation of the PDA layer to immobilize bone morphogenetic protein-2 (BMP-2) on Ti substrates. The surface chemistry of PDA or PDA/BMP-2-coated Ti was confirmed by contact angle measurement, scanning electron microscopy (SEM), immunofluorescence staining, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Background: Oxysterols, oxygenated by-products of cholesterol biosynthesis, play roles in various physiological and pathological systems. However, the effects of oxysterols on periodontal regeneration are unknown. This study investigated the effects of the specific oxysterol combination of 22(S)-hydroxycholesterol and 20(S)-hydroxycholesterol (SS) on the regeneration of periodontal tissues using in-vitro periodontal ligament stem cells (PDLSCs) and in-vivo models of alveolar bone defect.

View Article and Find Full Text PDF

We describe a calcium carbonate (CaCO3) mineralization approach to generate pH-responsive nanocarriers that can stably load S-nitrosoglutathione (GSNO) and dissolve at acidic endosomes to trigger intracellular release of nitric oxide (NO). GSNO-loaded CaCO3-mineralized nanoparticles (GSNO-MNPs) were prepared by an anionic block copolymer (PEG-Poly(l-aspartic acid))-templated mineralization. Ionic GSNO could be loaded in situ inside the CaCO3 core during the mineralization process.

View Article and Find Full Text PDF

The success of endodontic treatment depends on the eradication of microorganisms from the root canal system and the prevention of reinfection. The purpose of this investigation was to evaluate the antibacterial and antibiofilm efficacy of N-acetylcysteine (NAC), an antioxidant mucolytic agent, as an intracanal medicament against selected endodontic pathogens. Minimum inhibitory concentrations (MICs) of NAC for Actinomyces naeslundii, Lactobacillus salivarius, Streptococcus mutans, and Enterococcus faecalis were determined using the broth microdilution method.

View Article and Find Full Text PDF

Most studies of the beneficial effects of low-intensity pulsed ultrasound (LIPUS) on bone healing have used frequencies between 1.0 and 1.5 MHz.

View Article and Find Full Text PDF

Human periodontal ligament fibroblasts (hPLFs) are exposed to oxidative stress during periodontal inflammation and dental treatments. It is hypothesized that hydrogen peroxide (H2O2)-mediated oxidative stress decreases survival and osteogenic differentiation of hPLFs, whereas these decreases are prevented by activation of the Wnt pathway. However, there has been a lack of reports that define the exact roles of canonical Wnt/β-catenin signaling in H2O2-exposed hPLFs.

View Article and Find Full Text PDF

This study aimed to evaluate the genes that were expressed in the healing bones around SLA-treated titanium orthodontic mini-implants in a beagle at early (1-week) and late (4-week) stages with RNA-sequencing (RNA-Seq). Samples from sites of surgical defects were used as controls. Total RNA was extracted from the tissue around the implants, and an RNA-Seq analysis was performed with Illumina TruSeq.

View Article and Find Full Text PDF

Canonical Wnt signaling is thought to enhance osteogenic differentiation of human periodontal ligament fibroblasts (hPLFs). However, the mechanism of this enhancement has not yet been defined. We investigated the effects of Wnt1 on osteoblast differentiation of hPLFs and explored the mechanisms of the effects.

View Article and Find Full Text PDF

Oxysterols, oxidized derivatives of cholesterol, are biologically active molecules. Specific oxysterols have potent osteogenic properties that act on osteoprogenitor cells. However, the molecular mechanisms underlying these osteoinductive effects on embryonic stem cells (ESCs) are unknown.

View Article and Find Full Text PDF

Background/aims: Mussel-inspired polydopamine (PDA) is known to be an effective bioadhesive and bioactive material for controlling stem cell fate, which is important in stem cell-based regenerative medicine; however, the effect of PDA on osteogenic differentiation of periodontal ligament stem cells (PDLSCs) is not fully understood. In this study, we investigated the osteoinductive effect of PDA on PDLSCs and examined how this phenomenon is encouraged.

Methods: Osteogenic induction of PDLSCs was established by culturing cells on PDA film or on an uncoated polystyrene surface as a control.

View Article and Find Full Text PDF

The present study demonstrates the osteogenic effect of Zanthoxylum schinifolium on periodontal ligament stem cells (PDLSCs). The dried herb of Z. schinifolium was first extracted with 70% ethanol and subsequently fractionated into five parts: n-hexane, methylene chloride (MC), ethyl acetate (EA), n-butanol (BuOH), and water fractions.

View Article and Find Full Text PDF

Human periodontal ligament-derived stem cells (PDLSCs) demonstrate self-renewal capacity and multilineage differentiation potential. In this study, we investigated the transdifferentiation potential of human PDLSCs into pancreatic islet cells. To form three-dimensional (3D) clusters, PDLSCs were cultured in Matrigel with media containing differentiation-inducing agents.

View Article and Find Full Text PDF

This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) subjected to different titanium (Ti) surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS), and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT), and hydrophilic SLA (modSLA)) with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP) activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces.

View Article and Find Full Text PDF

Dental composite resin restoration for defective tooth may lead unpolymerized resin monomers to be leached into dental pulp tissue. The aim of this study was to investigate the early gene expression change over time of human dental pulp cells (HDPCs) treated with a low-level toxic concentration of Triethylene Glycol Dimethacrylate (TEGDMA), a common dental resin monomer, by adopting the novel high-throughput transcriptome analysis of RNA-seq. The low-level toxic concentration of TEGDMA was determined through MTT assays with serially diluted concentrations.

View Article and Find Full Text PDF

In our previous studies, we confirmed that low-level laser therapy (LLLT) with a 980-nm gallium-aluminum-arsenide diode laser was beneficial for the healing of the alveolar bone in rats with systemic disease. However, many factors can affect the biostimulatory effects of LLLT. Thus, we attempted to investigate the effects of irradiation time on the healing of extraction sockets by evaluating the expressions of genes and proteins related to bone healing.

View Article and Find Full Text PDF

Hesperetin (3',5,7-trihydroxy-4-methoxyflavanone) is a metabolite of hesperidin (hesperetin-7-O-rutinoside), which belongs to the flavanone subgroup and is found mainly in citrus fruits. Hesperetin has been reported to be an effective osteoinductive compound in various in vivo and in vitro models. However, how hesperetin effects osteogenic differentiation is not fully understood.

View Article and Find Full Text PDF